Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309969668> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4309969668 abstract "Dentistry frequently makes use of intraoral scanning technologies to digitally acquire the three-dimensional (3D) geometry of teeth. In recent times, dental clinics over the globe utilize used computer aided diagnosis (CAD) models to make treatment plans, for example, orthodontics. Orthodontic CAD system acts as a vital part of the advanced dentistry field. A 3D dental model, computed by patient impression, as input and aids dentist in the extraction, moving, deletion, and rearranging of teeth to simulate treatment output. Tooth segmentation and labelling is the basic and foremost element of the CAD model which needs to be addressed. Automated segmentation and classification of 3D dental images using advanced machine learning and deep learning (DL) models become essential. This article introduces a new 3D dental image segmentation and classification using DL with tunicate swarm algorithm (3DDISC-DLTSA) model. The major intention of the 3DDISC-DLTSA system is to segment the tooth model and identify seven distinct tooth types. To accomplish this, the presented 3DDISC-DLTSA model performs image pre-processing in two stages namely image filtering and U-Net segmentation. In addition, the 3DDISC-DLTSA model derives DenseNet-169 model for feature extraction purposes. For the recognition and classification of tooth type, the TSA based hyperparameter tuning process is carried out which helps to accomplish maximum classification performance. A wide range of experimental analyses is performed and the outcomes are inspected under many aspects. On dataset-1, 3DDISC-DLTSA model accuracy rose by 96.67%. On dataset-3, 3DDISC-DLTSA model accuracy rose by 97.48% and algorithm accuracy by 97.35%. The 3DDISC-DLTSA model outperformed more modern models, according to the comparative investigation." @default.
- W4309969668 created "2022-11-30" @default.
- W4309969668 creator A5012112034 @default.
- W4309969668 creator A5033508152 @default.
- W4309969668 creator A5033711346 @default.
- W4309969668 creator A5045105780 @default.
- W4309969668 creator A5045298567 @default.
- W4309969668 creator A5047495457 @default.
- W4309969668 date "2022-11-25" @default.
- W4309969668 modified "2023-10-14" @default.
- W4309969668 title "Three‐dimensional dental image segmentation and classification using deep learning with tunicate swarm algorithm" @default.
- W4309969668 cites W2804967795 @default.
- W4309969668 cites W2920184877 @default.
- W4309969668 cites W2951864735 @default.
- W4309969668 cites W2973105400 @default.
- W4309969668 cites W3021444369 @default.
- W4309969668 cites W3036044269 @default.
- W4309969668 cites W3090042500 @default.
- W4309969668 cites W3128611351 @default.
- W4309969668 cites W3141513209 @default.
- W4309969668 cites W3156438996 @default.
- W4309969668 cites W3180545632 @default.
- W4309969668 cites W3186019557 @default.
- W4309969668 cites W3188016109 @default.
- W4309969668 cites W3196650537 @default.
- W4309969668 cites W3197622673 @default.
- W4309969668 cites W3204428853 @default.
- W4309969668 cites W3209453742 @default.
- W4309969668 cites W4213312320 @default.
- W4309969668 cites W4220805960 @default.
- W4309969668 doi "https://doi.org/10.1111/exsy.13198" @default.
- W4309969668 hasPublicationYear "2022" @default.
- W4309969668 type Work @default.
- W4309969668 citedByCount "3" @default.
- W4309969668 countsByYear W43099696682022 @default.
- W4309969668 countsByYear W43099696682023 @default.
- W4309969668 crossrefType "journal-article" @default.
- W4309969668 hasAuthorship W4309969668A5012112034 @default.
- W4309969668 hasAuthorship W4309969668A5033508152 @default.
- W4309969668 hasAuthorship W4309969668A5033711346 @default.
- W4309969668 hasAuthorship W4309969668A5045105780 @default.
- W4309969668 hasAuthorship W4309969668A5045298567 @default.
- W4309969668 hasAuthorship W4309969668A5047495457 @default.
- W4309969668 hasConcept C115961682 @default.
- W4309969668 hasConcept C124504099 @default.
- W4309969668 hasConcept C127413603 @default.
- W4309969668 hasConcept C153180895 @default.
- W4309969668 hasConcept C154945302 @default.
- W4309969668 hasConcept C194789388 @default.
- W4309969668 hasConcept C199639397 @default.
- W4309969668 hasConcept C31972630 @default.
- W4309969668 hasConcept C41008148 @default.
- W4309969668 hasConcept C89600930 @default.
- W4309969668 hasConcept C9417928 @default.
- W4309969668 hasConceptScore W4309969668C115961682 @default.
- W4309969668 hasConceptScore W4309969668C124504099 @default.
- W4309969668 hasConceptScore W4309969668C127413603 @default.
- W4309969668 hasConceptScore W4309969668C153180895 @default.
- W4309969668 hasConceptScore W4309969668C154945302 @default.
- W4309969668 hasConceptScore W4309969668C194789388 @default.
- W4309969668 hasConceptScore W4309969668C199639397 @default.
- W4309969668 hasConceptScore W4309969668C31972630 @default.
- W4309969668 hasConceptScore W4309969668C41008148 @default.
- W4309969668 hasConceptScore W4309969668C89600930 @default.
- W4309969668 hasConceptScore W4309969668C9417928 @default.
- W4309969668 hasLocation W43099696681 @default.
- W4309969668 hasOpenAccess W4309969668 @default.
- W4309969668 hasPrimaryLocation W43099696681 @default.
- W4309969668 hasRelatedWork W1507266234 @default.
- W4309969668 hasRelatedWork W1669643531 @default.
- W4309969668 hasRelatedWork W2110230079 @default.
- W4309969668 hasRelatedWork W2117664411 @default.
- W4309969668 hasRelatedWork W2117933325 @default.
- W4309969668 hasRelatedWork W2122581818 @default.
- W4309969668 hasRelatedWork W2159066190 @default.
- W4309969668 hasRelatedWork W2549936415 @default.
- W4309969668 hasRelatedWork W2739874619 @default.
- W4309969668 hasRelatedWork W1967061043 @default.
- W4309969668 isParatext "false" @default.
- W4309969668 isRetracted "false" @default.
- W4309969668 workType "article" @default.