Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309990520> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4309990520 abstract "Modelling of the 3D breast shape under compression is of interest when optimizing image processing and reconstruction algorithms for mammography and digital breast tomosynthesis (DBT). Since these imaging techniques require the mechanical compression of the breast to obtain appropriate image quality, many such algorithms make use of breast-like phantoms. However, if phantoms do not have a realistic breast shape, this can impact the validity of such algorithms.To develop a point distribution model of the breast shape obtained through principal component analysis (PCA) of structured light (SL) scans from patient compressed breasts.SL scans were acquired at our institution during routine craniocaudal-view DBT imaging of 236 patients, creating a dataset containing DBT and SL scans with matching information. Thereafter, the SL scans were cleaned, merged, simplified, and set to a regular grid across all cases. A comparison between the initial SL scans after cleaning and the gridded SL scans was performed to determine the absolute difference between them. The scans with points in a regular grid were then used for PCA. Additionally, the correspondence between SL scans and DBT scans was assessed by comparing features such as the chest-to-nipple distance (CND), the projected breast area (PBA) and the length along the chest-wall (LCW). These features were compared using a paired t-test or the Wilcoxon signed rank sum test. Thereafter, the PCA shape prediction and SL scans were evaluated by calculating the mean absolute error to determine whether the model had adequately captured the information in the dataset. The coefficients obtained from the PCA could then parameterize a given breast shape as an offset from the sample means. We also explored correlations of the PCA breast shape model parameters with certain patient characteristics: age, glandular volume, glandular density by mass, total breast volume, compressed breast thickness, compression force, nipple location, and centre of the chest-wall.The median value across cases for the 90th and 99th percentiles of the interpolation error between the initial SL scans after cleaning and the gridded SL scans was 0.50 and 1.16 mm, respectively. The comparison between SL and DBT scans resulted in small, but statistically significant, mean differences of 1.6 mm, 1.6 mm, and 2.2 cm2 for the LCW, CND, and PBA, respectively. The final model achieved a median mean absolute error of 0.68 mm compared to the scanned breast shapes and a perfect correlation between the first PCA coefficient and the patient breast compressed thickness, making it possible to use it to generate new model-based breast shapes with a specific breast thickness.There is a good agreement between the breast shape coverage obtained with SL scans used to construct our model and the DBT projection images, and we could therefore create a generative model based on this data that is available for download on Github." @default.
- W4309990520 created "2022-11-30" @default.
- W4309990520 creator A5015456468 @default.
- W4309990520 creator A5029149110 @default.
- W4309990520 creator A5029834479 @default.
- W4309990520 creator A5079085843 @default.
- W4309990520 creator A5079270012 @default.
- W4309990520 date "2022-12-10" @default.
- W4309990520 modified "2023-10-18" @default.
- W4309990520 title "Generative compressed breast shape model for digital mammography and digital breast tomosynthesis" @default.
- W4309990520 cites W2001454785 @default.
- W4309990520 cites W2052746896 @default.
- W4309990520 cites W2104276184 @default.
- W4309990520 cites W2119693472 @default.
- W4309990520 cites W2131036894 @default.
- W4309990520 cites W2147673683 @default.
- W4309990520 cites W2150635919 @default.
- W4309990520 cites W2790429367 @default.
- W4309990520 cites W2918480504 @default.
- W4309990520 cites W2976700608 @default.
- W4309990520 cites W3028584944 @default.
- W4309990520 cites W3088241220 @default.
- W4309990520 cites W3092480895 @default.
- W4309990520 cites W3130590598 @default.
- W4309990520 cites W4220742751 @default.
- W4309990520 cites W4298082496 @default.
- W4309990520 doi "https://doi.org/10.1002/mp.16133" @default.
- W4309990520 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36433824" @default.
- W4309990520 hasPublicationYear "2022" @default.
- W4309990520 type Work @default.
- W4309990520 citedByCount "1" @default.
- W4309990520 countsByYear W43099905202023 @default.
- W4309990520 crossrefType "journal-article" @default.
- W4309990520 hasAuthorship W4309990520A5015456468 @default.
- W4309990520 hasAuthorship W4309990520A5029149110 @default.
- W4309990520 hasAuthorship W4309990520A5029834479 @default.
- W4309990520 hasAuthorship W4309990520A5079085843 @default.
- W4309990520 hasAuthorship W4309990520A5079270012 @default.
- W4309990520 hasBestOaLocation W43099905202 @default.
- W4309990520 hasConcept C105795698 @default.
- W4309990520 hasConcept C115961682 @default.
- W4309990520 hasConcept C121608353 @default.
- W4309990520 hasConcept C126322002 @default.
- W4309990520 hasConcept C12868164 @default.
- W4309990520 hasConcept C147454874 @default.
- W4309990520 hasConcept C153180895 @default.
- W4309990520 hasConcept C154945302 @default.
- W4309990520 hasConcept C206041023 @default.
- W4309990520 hasConcept C2777432617 @default.
- W4309990520 hasConcept C2780472235 @default.
- W4309990520 hasConcept C2781281974 @default.
- W4309990520 hasConcept C2989005 @default.
- W4309990520 hasConcept C31972630 @default.
- W4309990520 hasConcept C33923547 @default.
- W4309990520 hasConcept C41008148 @default.
- W4309990520 hasConcept C530470458 @default.
- W4309990520 hasConcept C55020928 @default.
- W4309990520 hasConcept C71924100 @default.
- W4309990520 hasConceptScore W4309990520C105795698 @default.
- W4309990520 hasConceptScore W4309990520C115961682 @default.
- W4309990520 hasConceptScore W4309990520C121608353 @default.
- W4309990520 hasConceptScore W4309990520C126322002 @default.
- W4309990520 hasConceptScore W4309990520C12868164 @default.
- W4309990520 hasConceptScore W4309990520C147454874 @default.
- W4309990520 hasConceptScore W4309990520C153180895 @default.
- W4309990520 hasConceptScore W4309990520C154945302 @default.
- W4309990520 hasConceptScore W4309990520C206041023 @default.
- W4309990520 hasConceptScore W4309990520C2777432617 @default.
- W4309990520 hasConceptScore W4309990520C2780472235 @default.
- W4309990520 hasConceptScore W4309990520C2781281974 @default.
- W4309990520 hasConceptScore W4309990520C2989005 @default.
- W4309990520 hasConceptScore W4309990520C31972630 @default.
- W4309990520 hasConceptScore W4309990520C33923547 @default.
- W4309990520 hasConceptScore W4309990520C41008148 @default.
- W4309990520 hasConceptScore W4309990520C530470458 @default.
- W4309990520 hasConceptScore W4309990520C55020928 @default.
- W4309990520 hasConceptScore W4309990520C71924100 @default.
- W4309990520 hasLocation W43099905201 @default.
- W4309990520 hasLocation W43099905202 @default.
- W4309990520 hasLocation W43099905203 @default.
- W4309990520 hasOpenAccess W4309990520 @default.
- W4309990520 hasPrimaryLocation W43099905201 @default.
- W4309990520 hasRelatedWork W17490072 @default.
- W4309990520 hasRelatedWork W2115237329 @default.
- W4309990520 hasRelatedWork W2123683167 @default.
- W4309990520 hasRelatedWork W2150868076 @default.
- W4309990520 hasRelatedWork W2513450528 @default.
- W4309990520 hasRelatedWork W2516953509 @default.
- W4309990520 hasRelatedWork W3215151671 @default.
- W4309990520 hasRelatedWork W4309990520 @default.
- W4309990520 hasRelatedWork W4318014827 @default.
- W4309990520 hasRelatedWork W2188900861 @default.
- W4309990520 isParatext "false" @default.
- W4309990520 isRetracted "false" @default.
- W4309990520 workType "article" @default.