Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310009600> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4310009600 abstract "The evolution of the Industrial revolution from 3.0 to 4.0 has transformed the Healthcare environment. Patient Electronic Health Records (EHR) are shared with medical research institutes for clinical research and to manage national disease outbreaks. Healthcare systems implementing centralized machine learning models risk cyberattacks exposing private patient data. Blockchain-based data storage systems enable data security of EHR. However, the low transactions/minute of decentralized systems limit the performance of Healthcare systems and increase network bottleneck concerns. In this paper, we propose a Machine Learning based Blockchain architecture for secure Healthcare systems to preserve patient data privacy using Federated Learning and address Blockchain bottleneck issues by adding sidechains for processing growing transaction requests. A local model using machine learning trains data locally in hospitals and uploads it via Smart Contracts to the Public Healthcare System for global model training. Sidechains enable increased processing speed of Smart Contracts reducing congestions in the network and increasing the transactions per second in the mainchain." @default.
- W4310009600 created "2022-11-30" @default.
- W4310009600 creator A5069928094 @default.
- W4310009600 creator A5088602685 @default.
- W4310009600 creator A5091852609 @default.
- W4310009600 date "2022-10-19" @default.
- W4310009600 modified "2023-10-17" @default.
- W4310009600 title "A Machine Learning based Scalable Blockchain architecture for a secure Healthcare system" @default.
- W4310009600 cites W2736904962 @default.
- W4310009600 cites W2946008609 @default.
- W4310009600 cites W3000385461 @default.
- W4310009600 cites W3002581186 @default.
- W4310009600 cites W3013479300 @default.
- W4310009600 cites W3018662283 @default.
- W4310009600 cites W3044493366 @default.
- W4310009600 cites W3083008070 @default.
- W4310009600 cites W3085802240 @default.
- W4310009600 cites W3129114628 @default.
- W4310009600 cites W3164111625 @default.
- W4310009600 doi "https://doi.org/10.1109/ictc55196.2022.9952962" @default.
- W4310009600 hasPublicationYear "2022" @default.
- W4310009600 type Work @default.
- W4310009600 citedByCount "1" @default.
- W4310009600 countsByYear W43100096002023 @default.
- W4310009600 crossrefType "proceedings-article" @default.
- W4310009600 hasAuthorship W4310009600A5069928094 @default.
- W4310009600 hasAuthorship W4310009600A5088602685 @default.
- W4310009600 hasAuthorship W4310009600A5091852609 @default.
- W4310009600 hasConcept C119857082 @default.
- W4310009600 hasConcept C124101348 @default.
- W4310009600 hasConcept C136764020 @default.
- W4310009600 hasConcept C149635348 @default.
- W4310009600 hasConcept C154945302 @default.
- W4310009600 hasConcept C160735492 @default.
- W4310009600 hasConcept C162324750 @default.
- W4310009600 hasConcept C2779687700 @default.
- W4310009600 hasConcept C2780513914 @default.
- W4310009600 hasConcept C38652104 @default.
- W4310009600 hasConcept C41008148 @default.
- W4310009600 hasConcept C48044578 @default.
- W4310009600 hasConcept C50522688 @default.
- W4310009600 hasConcept C71901391 @default.
- W4310009600 hasConcept C75684735 @default.
- W4310009600 hasConcept C75949130 @default.
- W4310009600 hasConcept C77088390 @default.
- W4310009600 hasConceptScore W4310009600C119857082 @default.
- W4310009600 hasConceptScore W4310009600C124101348 @default.
- W4310009600 hasConceptScore W4310009600C136764020 @default.
- W4310009600 hasConceptScore W4310009600C149635348 @default.
- W4310009600 hasConceptScore W4310009600C154945302 @default.
- W4310009600 hasConceptScore W4310009600C160735492 @default.
- W4310009600 hasConceptScore W4310009600C162324750 @default.
- W4310009600 hasConceptScore W4310009600C2779687700 @default.
- W4310009600 hasConceptScore W4310009600C2780513914 @default.
- W4310009600 hasConceptScore W4310009600C38652104 @default.
- W4310009600 hasConceptScore W4310009600C41008148 @default.
- W4310009600 hasConceptScore W4310009600C48044578 @default.
- W4310009600 hasConceptScore W4310009600C50522688 @default.
- W4310009600 hasConceptScore W4310009600C71901391 @default.
- W4310009600 hasConceptScore W4310009600C75684735 @default.
- W4310009600 hasConceptScore W4310009600C75949130 @default.
- W4310009600 hasConceptScore W4310009600C77088390 @default.
- W4310009600 hasFunder F4320335489 @default.
- W4310009600 hasLocation W43100096001 @default.
- W4310009600 hasOpenAccess W4310009600 @default.
- W4310009600 hasPrimaryLocation W43100096001 @default.
- W4310009600 hasRelatedWork W2361361118 @default.
- W4310009600 hasRelatedWork W2368437561 @default.
- W4310009600 hasRelatedWork W280853923 @default.
- W4310009600 hasRelatedWork W2912157678 @default.
- W4310009600 hasRelatedWork W3036266591 @default.
- W4310009600 hasRelatedWork W3140404707 @default.
- W4310009600 hasRelatedWork W3211628550 @default.
- W4310009600 hasRelatedWork W3212014260 @default.
- W4310009600 hasRelatedWork W4221142453 @default.
- W4310009600 hasRelatedWork W94000989 @default.
- W4310009600 isParatext "false" @default.
- W4310009600 isRetracted "false" @default.
- W4310009600 workType "article" @default.