Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310011254> ?p ?o ?g. }
- W4310011254 abstract "Abstract Identifying workers’ activities is crucial for ensuring the safety and productivity of the human workforce on construction sites. Many studies implement vision-based or inertial-based sensors to construct 3D human skeletons for automated postures and activity recognition. Researchers have developed enormous and heterogeneous datasets for generic motion and artificially intelligent models based on these datasets. However, the construction-related motion dataset and labels should be specifically designed, as construction workers are often exposed to awkward postures and intensive physical tasks. This study developed a small construction-related activity dataset with an in-lab experiment and implemented the datasets to manually label a large-scale construction motion data library (CML) for activity recognition. The developed CML dataset contains 225 types of activities and 146,480 samples; among them, 60 types of activities and 61,275 samples are highly related to construction activities. To verify the dataset, five widely applied deep learning algorithms were adopted to examine the dataset, and the usability, quality, and sufficiency were reported. The average accuracy of models without tunning can reach 74.62% to 83.92%." @default.
- W4310011254 created "2022-11-30" @default.
- W4310011254 creator A5000291571 @default.
- W4310011254 creator A5013795174 @default.
- W4310011254 creator A5044396095 @default.
- W4310011254 creator A5066788783 @default.
- W4310011254 date "2022-11-26" @default.
- W4310011254 modified "2023-10-09" @default.
- W4310011254 title "Construction motion data library: an integrated motion dataset for on-site activity recognition" @default.
- W4310011254 cites W1602223867 @default.
- W4310011254 cites W1893516992 @default.
- W4310011254 cites W1967149949 @default.
- W4310011254 cites W1971085546 @default.
- W4310011254 cites W1983705368 @default.
- W4310011254 cites W1988045004 @default.
- W4310011254 cites W1988467636 @default.
- W4310011254 cites W1994213402 @default.
- W4310011254 cites W1995113806 @default.
- W4310011254 cites W2000437662 @default.
- W4310011254 cites W2005639566 @default.
- W4310011254 cites W2016240821 @default.
- W4310011254 cites W2016387968 @default.
- W4310011254 cites W2019699137 @default.
- W4310011254 cites W2021813480 @default.
- W4310011254 cites W2024097232 @default.
- W4310011254 cites W2031334527 @default.
- W4310011254 cites W2033663068 @default.
- W4310011254 cites W2033922249 @default.
- W4310011254 cites W2040525991 @default.
- W4310011254 cites W2054491572 @default.
- W4310011254 cites W2057753645 @default.
- W4310011254 cites W2058256495 @default.
- W4310011254 cites W2064132797 @default.
- W4310011254 cites W2065961009 @default.
- W4310011254 cites W2076871221 @default.
- W4310011254 cites W2077564996 @default.
- W4310011254 cites W2082219790 @default.
- W4310011254 cites W2084027116 @default.
- W4310011254 cites W2086509056 @default.
- W4310011254 cites W2089253196 @default.
- W4310011254 cites W2092687223 @default.
- W4310011254 cites W2101032778 @default.
- W4310011254 cites W2112796928 @default.
- W4310011254 cites W2141827770 @default.
- W4310011254 cites W2142919571 @default.
- W4310011254 cites W2143004591 @default.
- W4310011254 cites W2144380653 @default.
- W4310011254 cites W2145546283 @default.
- W4310011254 cites W2175206234 @default.
- W4310011254 cites W2194775991 @default.
- W4310011254 cites W2247660117 @default.
- W4310011254 cites W2318973883 @default.
- W4310011254 cites W2365294403 @default.
- W4310011254 cites W2381252496 @default.
- W4310011254 cites W2400017509 @default.
- W4310011254 cites W2507244352 @default.
- W4310011254 cites W2526041356 @default.
- W4310011254 cites W2588955080 @default.
- W4310011254 cites W2593148160 @default.
- W4310011254 cites W2740820438 @default.
- W4310011254 cites W2743357133 @default.
- W4310011254 cites W2765433083 @default.
- W4310011254 cites W2798074450 @default.
- W4310011254 cites W2884455588 @default.
- W4310011254 cites W2896196300 @default.
- W4310011254 cites W2898471894 @default.
- W4310011254 cites W2944006115 @default.
- W4310011254 cites W2952587893 @default.
- W4310011254 cites W2964134613 @default.
- W4310011254 cites W2972018527 @default.
- W4310011254 cites W3017147371 @default.
- W4310011254 cites W3029510177 @default.
- W4310011254 cites W3103858256 @default.
- W4310011254 cites W3123975179 @default.
- W4310011254 cites W3146261424 @default.
- W4310011254 cites W4214624668 @default.
- W4310011254 cites W4230005465 @default.
- W4310011254 cites W4310011254 @default.
- W4310011254 doi "https://doi.org/10.1038/s41597-022-01841-1" @default.
- W4310011254 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36435886" @default.
- W4310011254 hasPublicationYear "2022" @default.
- W4310011254 type Work @default.
- W4310011254 citedByCount "4" @default.
- W4310011254 countsByYear W43100112542022 @default.
- W4310011254 countsByYear W43100112542023 @default.
- W4310011254 crossrefType "journal-article" @default.
- W4310011254 hasAuthorship W4310011254A5000291571 @default.
- W4310011254 hasAuthorship W4310011254A5013795174 @default.
- W4310011254 hasAuthorship W4310011254A5044396095 @default.
- W4310011254 hasAuthorship W4310011254A5066788783 @default.
- W4310011254 hasBestOaLocation W43100112541 @default.
- W4310011254 hasConcept C104114177 @default.
- W4310011254 hasConcept C107457646 @default.
- W4310011254 hasConcept C119857082 @default.
- W4310011254 hasConcept C121332964 @default.
- W4310011254 hasConcept C121687571 @default.
- W4310011254 hasConcept C124101348 @default.
- W4310011254 hasConcept C154945302 @default.
- W4310011254 hasConcept C170130773 @default.
- W4310011254 hasConcept C199360897 @default.