Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310013382> ?p ?o ?g. }
- W4310013382 endingPage "101280" @default.
- W4310013382 startingPage "101280" @default.
- W4310013382 abstract "Wrinkle silica nanoparticles (WSNs) possess the typical characteristics in their short diffusion path and central-radial pore structure, which are favorable to use in a wide range of practical application. In this research, a solvent evaporation-induced self-assembly strategy was adopted for the preparation of WSN materials to give an insight into the formation mechanism of the WSNs. Through one-step temperature-controlled method, it was found that the WSNs could be successfully synthesized under the temperature of 60 °C, while the pore sizes and particle sizes were both gradually decreased as the synthesis temperature continued to increase. Comparably, a two-step temperature-controlled method was employed through modulating the stirring time length in order to synthesize silica nanospheres with large pore size and small particle size. The results showed that Ni2P/WSNs-8+16 catalyst performed the highest naphthalene hydrogenation activity (almost 100% conversion at 300 °C) when the stirring time in the first stage and the second stage was 8 h and 16 h, respectively." @default.
- W4310013382 created "2022-11-30" @default.
- W4310013382 creator A5008334578 @default.
- W4310013382 creator A5027484648 @default.
- W4310013382 creator A5073931528 @default.
- W4310013382 creator A5082246334 @default.
- W4310013382 creator A5083003999 @default.
- W4310013382 date "2023-01-01" @default.
- W4310013382 modified "2023-10-05" @default.
- W4310013382 title "Synthesis of wrinkle silica nanospheres by solvent evaporation-induced self-assembly method for hydrogenation reaction" @default.
- W4310013382 cites W1964221825 @default.
- W4310013382 cites W1965259240 @default.
- W4310013382 cites W1985483237 @default.
- W4310013382 cites W2005280124 @default.
- W4310013382 cites W2062418471 @default.
- W4310013382 cites W2063094481 @default.
- W4310013382 cites W2097649221 @default.
- W4310013382 cites W2100026459 @default.
- W4310013382 cites W2107520743 @default.
- W4310013382 cites W2115932903 @default.
- W4310013382 cites W2118807794 @default.
- W4310013382 cites W2127360470 @default.
- W4310013382 cites W2130486648 @default.
- W4310013382 cites W2140910191 @default.
- W4310013382 cites W2163184567 @default.
- W4310013382 cites W2168408037 @default.
- W4310013382 cites W2263288725 @default.
- W4310013382 cites W2300459842 @default.
- W4310013382 cites W2300960100 @default.
- W4310013382 cites W2312803919 @default.
- W4310013382 cites W2520425971 @default.
- W4310013382 cites W2565244115 @default.
- W4310013382 cites W2885795196 @default.
- W4310013382 cites W2905128870 @default.
- W4310013382 cites W2907116183 @default.
- W4310013382 cites W3006353096 @default.
- W4310013382 cites W3018873682 @default.
- W4310013382 cites W3046249134 @default.
- W4310013382 cites W3084285783 @default.
- W4310013382 cites W3085472246 @default.
- W4310013382 cites W3093376069 @default.
- W4310013382 cites W3139029837 @default.
- W4310013382 cites W3146851869 @default.
- W4310013382 cites W3161431160 @default.
- W4310013382 cites W3165473703 @default.
- W4310013382 cites W3169525433 @default.
- W4310013382 cites W3179271947 @default.
- W4310013382 cites W4210676613 @default.
- W4310013382 cites W4301461896 @default.
- W4310013382 doi "https://doi.org/10.1016/j.mtchem.2022.101280" @default.
- W4310013382 hasPublicationYear "2023" @default.
- W4310013382 type Work @default.
- W4310013382 citedByCount "0" @default.
- W4310013382 crossrefType "journal-article" @default.
- W4310013382 hasAuthorship W4310013382A5008334578 @default.
- W4310013382 hasAuthorship W4310013382A5027484648 @default.
- W4310013382 hasAuthorship W4310013382A5073931528 @default.
- W4310013382 hasAuthorship W4310013382A5082246334 @default.
- W4310013382 hasAuthorship W4310013382A5083003999 @default.
- W4310013382 hasConcept C111368507 @default.
- W4310013382 hasConcept C121332964 @default.
- W4310013382 hasConcept C127313418 @default.
- W4310013382 hasConcept C127413603 @default.
- W4310013382 hasConcept C153294291 @default.
- W4310013382 hasConcept C155672457 @default.
- W4310013382 hasConcept C161790260 @default.
- W4310013382 hasConcept C171250308 @default.
- W4310013382 hasConcept C178790620 @default.
- W4310013382 hasConcept C185592680 @default.
- W4310013382 hasConcept C187530423 @default.
- W4310013382 hasConcept C192562407 @default.
- W4310013382 hasConcept C2778517922 @default.
- W4310013382 hasConcept C2780471494 @default.
- W4310013382 hasConcept C39353612 @default.
- W4310013382 hasConcept C42360764 @default.
- W4310013382 hasConcept C61441594 @default.
- W4310013382 hasConcept C69357855 @default.
- W4310013382 hasConcept C97355855 @default.
- W4310013382 hasConceptScore W4310013382C111368507 @default.
- W4310013382 hasConceptScore W4310013382C121332964 @default.
- W4310013382 hasConceptScore W4310013382C127313418 @default.
- W4310013382 hasConceptScore W4310013382C127413603 @default.
- W4310013382 hasConceptScore W4310013382C153294291 @default.
- W4310013382 hasConceptScore W4310013382C155672457 @default.
- W4310013382 hasConceptScore W4310013382C161790260 @default.
- W4310013382 hasConceptScore W4310013382C171250308 @default.
- W4310013382 hasConceptScore W4310013382C178790620 @default.
- W4310013382 hasConceptScore W4310013382C185592680 @default.
- W4310013382 hasConceptScore W4310013382C187530423 @default.
- W4310013382 hasConceptScore W4310013382C192562407 @default.
- W4310013382 hasConceptScore W4310013382C2778517922 @default.
- W4310013382 hasConceptScore W4310013382C2780471494 @default.
- W4310013382 hasConceptScore W4310013382C39353612 @default.
- W4310013382 hasConceptScore W4310013382C42360764 @default.
- W4310013382 hasConceptScore W4310013382C61441594 @default.
- W4310013382 hasConceptScore W4310013382C69357855 @default.
- W4310013382 hasConceptScore W4310013382C97355855 @default.
- W4310013382 hasLocation W43100133821 @default.