Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310015051> ?p ?o ?g. }
- W4310015051 endingPage "128835" @default.
- W4310015051 startingPage "128835" @default.
- W4310015051 abstract "To estimate snowpack water storage in mountain basins, this study presents a framework that couples a deep-learning long short-term memory (LSTM) model and a zonal bias-correction approach for assimilating ground snow observations. We explored the framework’s ability for snow water equivalent (SWE) mapping and forecasting in a domain, including the Feather, Yuba-Bear, and American River basins in California’s Sierra Nevada. Through a series of different modeling experiments, performances of the LSTM model and bias-correction approach were independently investigated. The LSTM model trained with meteorological forcing (precipitation and temperature), landscape attributes, and antecedent lagged snow conditions, showed good agreement with SWE reanalysis data (Nash-Sutcliffe efficiency, NSE = 0.99). However, for continuous SWE projection without using SWE reanalysis as the antecedent snow condition, the LSTM model underestimated basin-scale and site-scale SWE (NSE = 0.19), reflecting large discrepancies since model bias accumulates over time. Thus, a zonal inverse-distance-weighting (IDW) bias-correction approach was proposed to assimilate ground observations and correct model trajectory. With the bias correction, SWE estimates were significantly improved (NSE = 0.79). The zonal IDW approach accounts for snow differences across different areas by zonal distance, based on historical snow patterns, showing better predictions than the original IDW, which showed larger biases in complex terrain with a rain shadow. We observed that SWE estimates from the framework were not sensitive to the difference in precipitation and temperature forcings between observation-based data and one-day-ahead weather forecasts, suggesting that the framework can use weather-forecast forcing for snowpack forecasting. Comparison between results from monthly and daily bias corrections showed that increasing bias-correction frequency and integrating more snow observations can further improve SWE estimates. Using the continuous SWE products, analyses of 170 precipitation events showed that snowmelt often occurred when daily temperature was above 3.7 °C, augmenting runoff. The proposed framework leverages ground observations and a deep-learning model to provide daily gridded snowpack estimates, which are important for runoff forecasting and water supply." @default.
- W4310015051 created "2022-11-30" @default.
- W4310015051 creator A5003907956 @default.
- W4310015051 creator A5060865299 @default.
- W4310015051 creator A5076942604 @default.
- W4310015051 date "2023-01-01" @default.
- W4310015051 modified "2023-09-26" @default.
- W4310015051 title "Mapping of snow water equivalent by a deep-learning model assimilating snow observations" @default.
- W4310015051 cites W1520034080 @default.
- W4310015051 cites W1560807794 @default.
- W4310015051 cites W1622317080 @default.
- W4310015051 cites W1649947482 @default.
- W4310015051 cites W1883948941 @default.
- W4310015051 cites W1934188560 @default.
- W4310015051 cites W1942135831 @default.
- W4310015051 cites W1966334841 @default.
- W4310015051 cites W1971705798 @default.
- W4310015051 cites W1996885432 @default.
- W4310015051 cites W1998840704 @default.
- W4310015051 cites W2008899739 @default.
- W4310015051 cites W2019130939 @default.
- W4310015051 cites W2046243459 @default.
- W4310015051 cites W2051413189 @default.
- W4310015051 cites W2064675550 @default.
- W4310015051 cites W2065742895 @default.
- W4310015051 cites W2067872494 @default.
- W4310015051 cites W2070904642 @default.
- W4310015051 cites W2076063813 @default.
- W4310015051 cites W2080281207 @default.
- W4310015051 cites W2080983344 @default.
- W4310015051 cites W2081059972 @default.
- W4310015051 cites W2081341855 @default.
- W4310015051 cites W2083093485 @default.
- W4310015051 cites W2090900562 @default.
- W4310015051 cites W2103497845 @default.
- W4310015051 cites W2117319840 @default.
- W4310015051 cites W2122219732 @default.
- W4310015051 cites W2133665775 @default.
- W4310015051 cites W2137597204 @default.
- W4310015051 cites W2142416245 @default.
- W4310015051 cites W2145507149 @default.
- W4310015051 cites W2148749831 @default.
- W4310015051 cites W2170015719 @default.
- W4310015051 cites W2171761316 @default.
- W4310015051 cites W2273064028 @default.
- W4310015051 cites W2291349597 @default.
- W4310015051 cites W2329550616 @default.
- W4310015051 cites W2339994680 @default.
- W4310015051 cites W2425864042 @default.
- W4310015051 cites W2461301683 @default.
- W4310015051 cites W2519376232 @default.
- W4310015051 cites W2524994297 @default.
- W4310015051 cites W2531926157 @default.
- W4310015051 cites W2547801032 @default.
- W4310015051 cites W2581519219 @default.
- W4310015051 cites W2602377863 @default.
- W4310015051 cites W2609552750 @default.
- W4310015051 cites W2738550157 @default.
- W4310015051 cites W2763635700 @default.
- W4310015051 cites W2765597810 @default.
- W4310015051 cites W2791711478 @default.
- W4310015051 cites W2793246819 @default.
- W4310015051 cites W2802436364 @default.
- W4310015051 cites W2805595551 @default.
- W4310015051 cites W2808594061 @default.
- W4310015051 cites W2889450552 @default.
- W4310015051 cites W2889816078 @default.
- W4310015051 cites W2898661956 @default.
- W4310015051 cites W2901116578 @default.
- W4310015051 cites W2907257857 @default.
- W4310015051 cites W2913463547 @default.
- W4310015051 cites W2939407418 @default.
- W4310015051 cites W2944714223 @default.
- W4310015051 cites W2964528833 @default.
- W4310015051 cites W2981781694 @default.
- W4310015051 cites W2986657718 @default.
- W4310015051 cites W2992562544 @default.
- W4310015051 cites W2995149074 @default.
- W4310015051 cites W2996111813 @default.
- W4310015051 cites W2998736501 @default.
- W4310015051 cites W3008439211 @default.
- W4310015051 cites W3012304415 @default.
- W4310015051 cites W3024402844 @default.
- W4310015051 cites W3036030356 @default.
- W4310015051 cites W3037301392 @default.
- W4310015051 cites W3038193565 @default.
- W4310015051 cites W3044038551 @default.
- W4310015051 cites W3044214809 @default.
- W4310015051 cites W3075302338 @default.
- W4310015051 cites W3086228570 @default.
- W4310015051 cites W3091784922 @default.
- W4310015051 cites W3094112595 @default.
- W4310015051 cites W3099878876 @default.
- W4310015051 cites W3099909056 @default.
- W4310015051 cites W3101203587 @default.
- W4310015051 cites W3106370744 @default.
- W4310015051 cites W3118710932 @default.
- W4310015051 cites W3123890581 @default.