Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310015333> ?p ?o ?g. }
- W4310015333 endingPage "128833" @default.
- W4310015333 startingPage "128833" @default.
- W4310015333 abstract "Accurate estimation of mountain vegetation gross primary productivity (GPP) at fine spatial resolutions offers opportunities to better understand mountain ecosystems’ feedback to the global climate system. Eco-hydrological models have great advantages in simulating mountain vegetation photosynthesis, but their large-scale applications remain challenging at fine spatial resolutions due to the computing resources. In this work, a scheme by integrating an eco-hydrological model called Boreal Ecosystem Productivity Simulator-TerrainLab (BTL) with the linear and non-linear downscaling processes, was developed to obtain large-scale mountain vegetation GPP at the 30 m resolution over four watersheds. Firstly, two coarse spatial resolution GPP were simulated by BTL at 480 m and 120 m. Then, the 30 m resolution GPP was estimated by a linear downscaling process modelled at 120 m and a non-linear downscaling process modelled from 480 m to 120 m. The 30 m resolution BTL-simulated GPP was served as reference for evaluation. Results showed that the Root-Mean-Square-Error (RMSE) after downscaling was decreased by 110 gCm-2year−1 compared to the 120 m resolution BTL-simulated GPP (500 gCm−2 year−1) at the 30 m resolution, highlighting the effectiveness of the proposed scheme in recovering the topographic variations of mountain vegetation GPP at fine spatial resolutions. Compared to the 120 m resolution BTL-simulated GPP (351 gCm−2 year−1), RMSE after downscaling was decreased by 156 gCm−2 year−1 at the 120 m resolution, indicating that the proposed scheme is feasible in correcting GPP errors at coarse spatial resolutions. More specifically, the non-linear downscaling process was observed to effectively improve GPP estimates after linear downscaling, suggesting that the spatial scaling errors in coarse estimates should be considered in the downscaling process. Our study indicates that the scheme that runs eco-hydrological models at coarse resolutions and then downscales them by surface heterogeneity is a practical approach for obtaining large-scale mountain vegetation GPP at fine spatial resolutions." @default.
- W4310015333 created "2022-11-30" @default.
- W4310015333 creator A5019197462 @default.
- W4310015333 creator A5030797455 @default.
- W4310015333 creator A5031428264 @default.
- W4310015333 creator A5069147685 @default.
- W4310015333 creator A5082765830 @default.
- W4310015333 date "2023-01-01" @default.
- W4310015333 modified "2023-10-04" @default.
- W4310015333 title "A fine spatial resolution estimation scheme for large-scale gross primary productivity (GPP) in mountain ecosystems by integrating an eco-hydrological model with the combination of linear and non-linear downscaling processes" @default.
- W4310015333 cites W1500576594 @default.
- W4310015333 cites W1838347895 @default.
- W4310015333 cites W186191888 @default.
- W4310015333 cites W1967559713 @default.
- W4310015333 cites W1975158286 @default.
- W4310015333 cites W1985076527 @default.
- W4310015333 cites W1994912176 @default.
- W4310015333 cites W1996075252 @default.
- W4310015333 cites W1996613904 @default.
- W4310015333 cites W1999112734 @default.
- W4310015333 cites W2001510610 @default.
- W4310015333 cites W2018718401 @default.
- W4310015333 cites W2026836154 @default.
- W4310015333 cites W2030097343 @default.
- W4310015333 cites W2039361154 @default.
- W4310015333 cites W2039507572 @default.
- W4310015333 cites W2046857879 @default.
- W4310015333 cites W2057498579 @default.
- W4310015333 cites W2066163557 @default.
- W4310015333 cites W2077161723 @default.
- W4310015333 cites W2098020412 @default.
- W4310015333 cites W2098450420 @default.
- W4310015333 cites W2098653553 @default.
- W4310015333 cites W2102717943 @default.
- W4310015333 cites W2104973080 @default.
- W4310015333 cites W2108484081 @default.
- W4310015333 cites W2108614290 @default.
- W4310015333 cites W2115298764 @default.
- W4310015333 cites W2117324426 @default.
- W4310015333 cites W2126349297 @default.
- W4310015333 cites W2136904626 @default.
- W4310015333 cites W2147423506 @default.
- W4310015333 cites W2150081164 @default.
- W4310015333 cites W2151647593 @default.
- W4310015333 cites W2156142545 @default.
- W4310015333 cites W2159159621 @default.
- W4310015333 cites W2161094103 @default.
- W4310015333 cites W2164574849 @default.
- W4310015333 cites W2164780007 @default.
- W4310015333 cites W2169123244 @default.
- W4310015333 cites W2277342132 @default.
- W4310015333 cites W2298779432 @default.
- W4310015333 cites W2301692565 @default.
- W4310015333 cites W2338049369 @default.
- W4310015333 cites W2343787371 @default.
- W4310015333 cites W2588003345 @default.
- W4310015333 cites W2589503469 @default.
- W4310015333 cites W262856817 @default.
- W4310015333 cites W2680863156 @default.
- W4310015333 cites W2753753116 @default.
- W4310015333 cites W2765724720 @default.
- W4310015333 cites W2767294046 @default.
- W4310015333 cites W2771841295 @default.
- W4310015333 cites W2777952969 @default.
- W4310015333 cites W2785822431 @default.
- W4310015333 cites W2787978013 @default.
- W4310015333 cites W2792093398 @default.
- W4310015333 cites W2809530809 @default.
- W4310015333 cites W2811382599 @default.
- W4310015333 cites W2896273502 @default.
- W4310015333 cites W2904391595 @default.
- W4310015333 cites W2921915420 @default.
- W4310015333 cites W2943316090 @default.
- W4310015333 cites W2943838109 @default.
- W4310015333 cites W2954455471 @default.
- W4310015333 cites W2965731873 @default.
- W4310015333 cites W2969017260 @default.
- W4310015333 cites W2971653617 @default.
- W4310015333 cites W2971790159 @default.
- W4310015333 cites W2990292985 @default.
- W4310015333 cites W3035375758 @default.
- W4310015333 cites W3035620550 @default.
- W4310015333 cites W3088919884 @default.
- W4310015333 cites W3090839187 @default.
- W4310015333 cites W3094409592 @default.
- W4310015333 cites W3095448964 @default.
- W4310015333 cites W3155221721 @default.
- W4310015333 cites W3192062110 @default.
- W4310015333 cites W3196654965 @default.
- W4310015333 cites W4206334030 @default.
- W4310015333 cites W4239091324 @default.
- W4310015333 cites W4283395821 @default.
- W4310015333 doi "https://doi.org/10.1016/j.jhydrol.2022.128833" @default.
- W4310015333 hasPublicationYear "2023" @default.
- W4310015333 type Work @default.
- W4310015333 citedByCount "7" @default.
- W4310015333 countsByYear W43100153332023 @default.
- W4310015333 crossrefType "journal-article" @default.