Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310019796> ?p ?o ?g. }
- W4310019796 endingPage "116500" @default.
- W4310019796 startingPage "116500" @default.
- W4310019796 abstract "In this paper, an efficient method for performing minimum weight optimization of composite laminates using artificial neural network (ANN) based surrogate models is proposed. By predicting the buckling loads of the laminates using ANN the use of time-consuming buckling evaluations during the iterative optimization process are avoided. Using for the first time lamination parameters, laminate thickness and other dimensional parameters as inputs for these ANN models significantly reduces the number of models required and therefore computational cost of considering laminates with many different numbers of layers and total thickness. Besides, as the stacking sequences are represented by lamination parameters, the number of inputs of the ANN models is also significantly reduced, avoiding the curse of dimensionality. Finite element analysis (FEA) is employed together with the Latin hypercube sampling (LHS) method to generate the database for the training and testing of the ANN models. The trained ANN models are then employed within a genetic algorithm (GA) to optimize the stacking sequences and structural dimensions to minimize the weight of the composite laminates. The advantages of using ANN in predicting buckling load is proved by comparison with other machine learning methods, and the effectiveness and efficiency of the proposed optimization method is demonstrated through the optimization of flat, blade-stiffened and hat-stiffened laminates." @default.
- W4310019796 created "2022-11-30" @default.
- W4310019796 creator A5011215065 @default.
- W4310019796 creator A5040285681 @default.
- W4310019796 creator A5053588327 @default.
- W4310019796 creator A5054560949 @default.
- W4310019796 creator A5056940011 @default.
- W4310019796 creator A5067818485 @default.
- W4310019796 creator A5068566719 @default.
- W4310019796 date "2023-02-01" @default.
- W4310019796 modified "2023-10-14" @default.
- W4310019796 title "Design optimization of laminated composite structures using artificial neural network and genetic algorithm" @default.
- W4310019796 cites W1572080606 @default.
- W4310019796 cites W165169553 @default.
- W4310019796 cites W1728740024 @default.
- W4310019796 cites W1789886140 @default.
- W4310019796 cites W1969471161 @default.
- W4310019796 cites W1974187423 @default.
- W4310019796 cites W1976594176 @default.
- W4310019796 cites W1980550710 @default.
- W4310019796 cites W1993789629 @default.
- W4310019796 cites W1996513455 @default.
- W4310019796 cites W1998781095 @default.
- W4310019796 cites W1998990765 @default.
- W4310019796 cites W2009717038 @default.
- W4310019796 cites W2013486619 @default.
- W4310019796 cites W2013605115 @default.
- W4310019796 cites W2023370127 @default.
- W4310019796 cites W2025109034 @default.
- W4310019796 cites W2025386064 @default.
- W4310019796 cites W2027011629 @default.
- W4310019796 cites W2028585765 @default.
- W4310019796 cites W2036468357 @default.
- W4310019796 cites W2036916452 @default.
- W4310019796 cites W2048906999 @default.
- W4310019796 cites W2056218450 @default.
- W4310019796 cites W2057807082 @default.
- W4310019796 cites W2062912343 @default.
- W4310019796 cites W2072418023 @default.
- W4310019796 cites W2097743434 @default.
- W4310019796 cites W2101664201 @default.
- W4310019796 cites W2112844431 @default.
- W4310019796 cites W2115516517 @default.
- W4310019796 cites W2135149176 @default.
- W4310019796 cites W2143549268 @default.
- W4310019796 cites W2162456256 @default.
- W4310019796 cites W2167580870 @default.
- W4310019796 cites W2262339025 @default.
- W4310019796 cites W2285531429 @default.
- W4310019796 cites W2465049478 @default.
- W4310019796 cites W2524536352 @default.
- W4310019796 cites W2618613105 @default.
- W4310019796 cites W2746991079 @default.
- W4310019796 cites W2787883784 @default.
- W4310019796 cites W2802155018 @default.
- W4310019796 cites W2803346709 @default.
- W4310019796 cites W2805823920 @default.
- W4310019796 cites W2861526221 @default.
- W4310019796 cites W2905861494 @default.
- W4310019796 cites W2909062960 @default.
- W4310019796 cites W2922779172 @default.
- W4310019796 cites W2973992918 @default.
- W4310019796 cites W2977149112 @default.
- W4310019796 cites W3000424020 @default.
- W4310019796 cites W3007737126 @default.
- W4310019796 cites W3021577791 @default.
- W4310019796 cites W3033308869 @default.
- W4310019796 cites W3039939920 @default.
- W4310019796 cites W3044181526 @default.
- W4310019796 cites W3082360600 @default.
- W4310019796 cites W3108349519 @default.
- W4310019796 cites W3112880102 @default.
- W4310019796 cites W3120310365 @default.
- W4310019796 cites W3125250686 @default.
- W4310019796 cites W3165490438 @default.
- W4310019796 cites W3188225742 @default.
- W4310019796 cites W3191264372 @default.
- W4310019796 doi "https://doi.org/10.1016/j.compstruct.2022.116500" @default.
- W4310019796 hasPublicationYear "2023" @default.
- W4310019796 type Work @default.
- W4310019796 citedByCount "8" @default.
- W4310019796 countsByYear W43100197962023 @default.
- W4310019796 crossrefType "journal-article" @default.
- W4310019796 hasAuthorship W4310019796A5011215065 @default.
- W4310019796 hasAuthorship W4310019796A5040285681 @default.
- W4310019796 hasAuthorship W4310019796A5053588327 @default.
- W4310019796 hasAuthorship W4310019796A5054560949 @default.
- W4310019796 hasAuthorship W4310019796A5056940011 @default.
- W4310019796 hasAuthorship W4310019796A5067818485 @default.
- W4310019796 hasAuthorship W4310019796A5068566719 @default.
- W4310019796 hasConcept C105795698 @default.
- W4310019796 hasConcept C111030470 @default.
- W4310019796 hasConcept C11413529 @default.
- W4310019796 hasConcept C119857082 @default.
- W4310019796 hasConcept C121332964 @default.
- W4310019796 hasConcept C127413603 @default.
- W4310019796 hasConcept C135628077 @default.
- W4310019796 hasConcept C145922259 @default.