Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310056248> ?p ?o ?g. }
- W4310056248 endingPage "4449" @default.
- W4310056248 startingPage "4437" @default.
- W4310056248 abstract "Throughput bottlenecks remain a main concern for managers in practice since they affect production output and throughput times. A large literature on bottleneck detection and prediction consequently emerged. Bottleneck prediction is specifically important in context where bottlenecks shift since it allows for counteracting the potential impact. The literature on throughput bottleneck prediction largely focusses on temporal aspects. Although this reflects the relation among stations if the routing of jobs is fairly directed, the relative station position constantly changes for more complex routings. A station maybe upstream, downstream or have no relation to another station dependent on the mix of jobs currently on the shop floor. In these high-variety contexts, both temporal and spatial features should be considered when predicting bottlenecks. In response, this study proposes a new neural network model that systematically connects multiple independent workstations into a system by extracting the spatial features between workstations. The new approach is different from traditional stacking mechanisms applied in the literature, and it allows for a better integration of spatial and temporal neural networks. Experimental results show that the proposed model outperforms alternative models and provides good prediction performance. Findings have important implications for research and practice." @default.
- W4310056248 created "2022-11-30" @default.
- W4310056248 creator A5004219694 @default.
- W4310056248 creator A5021504878 @default.
- W4310056248 creator A5034560920 @default.
- W4310056248 creator A5050771819 @default.
- W4310056248 creator A5051464329 @default.
- W4310056248 creator A5057111258 @default.
- W4310056248 date "2022-11-25" @default.
- W4310056248 modified "2023-09-28" @default.
- W4310056248 title "An integrated spatial-temporal neural network for proactive throughput bottleneck prediction in high-variety shops with complex job routings" @default.
- W4310056248 cites W1988489432 @default.
- W4310056248 cites W1992200341 @default.
- W4310056248 cites W1998457593 @default.
- W4310056248 cites W2009351465 @default.
- W4310056248 cites W2038143262 @default.
- W4310056248 cites W2055381959 @default.
- W4310056248 cites W2064675550 @default.
- W4310056248 cites W2067823021 @default.
- W4310056248 cites W2092690310 @default.
- W4310056248 cites W2127970246 @default.
- W4310056248 cites W2142768700 @default.
- W4310056248 cites W2143612262 @default.
- W4310056248 cites W2255466643 @default.
- W4310056248 cites W2277454464 @default.
- W4310056248 cites W2296186196 @default.
- W4310056248 cites W2336160299 @default.
- W4310056248 cites W2535679224 @default.
- W4310056248 cites W2743976221 @default.
- W4310056248 cites W2748922771 @default.
- W4310056248 cites W2791539067 @default.
- W4310056248 cites W2802356579 @default.
- W4310056248 cites W2884076877 @default.
- W4310056248 cites W2894058337 @default.
- W4310056248 cites W2909877301 @default.
- W4310056248 cites W2914289455 @default.
- W4310056248 cites W2914743966 @default.
- W4310056248 cites W2965539152 @default.
- W4310056248 cites W2997277309 @default.
- W4310056248 cites W2999541283 @default.
- W4310056248 cites W3017143632 @default.
- W4310056248 cites W3084394145 @default.
- W4310056248 cites W3103794298 @default.
- W4310056248 cites W3190662310 @default.
- W4310056248 cites W4236555890 @default.
- W4310056248 cites W4254649601 @default.
- W4310056248 doi "https://doi.org/10.1080/00207543.2022.2148769" @default.
- W4310056248 hasPublicationYear "2022" @default.
- W4310056248 type Work @default.
- W4310056248 citedByCount "0" @default.
- W4310056248 crossrefType "journal-article" @default.
- W4310056248 hasAuthorship W4310056248A5004219694 @default.
- W4310056248 hasAuthorship W4310056248A5021504878 @default.
- W4310056248 hasAuthorship W4310056248A5034560920 @default.
- W4310056248 hasAuthorship W4310056248A5050771819 @default.
- W4310056248 hasAuthorship W4310056248A5051464329 @default.
- W4310056248 hasAuthorship W4310056248A5057111258 @default.
- W4310056248 hasConcept C111919701 @default.
- W4310056248 hasConcept C119857082 @default.
- W4310056248 hasConcept C120314980 @default.
- W4310056248 hasConcept C124101348 @default.
- W4310056248 hasConcept C136197465 @default.
- W4310056248 hasConcept C149635348 @default.
- W4310056248 hasConcept C151730666 @default.
- W4310056248 hasConcept C154945302 @default.
- W4310056248 hasConcept C157764524 @default.
- W4310056248 hasConcept C191172861 @default.
- W4310056248 hasConcept C25343380 @default.
- W4310056248 hasConcept C2779343474 @default.
- W4310056248 hasConcept C2780513914 @default.
- W4310056248 hasConcept C31258907 @default.
- W4310056248 hasConcept C41008148 @default.
- W4310056248 hasConcept C50644808 @default.
- W4310056248 hasConcept C555944384 @default.
- W4310056248 hasConcept C67953723 @default.
- W4310056248 hasConcept C76155785 @default.
- W4310056248 hasConcept C79403827 @default.
- W4310056248 hasConcept C86803240 @default.
- W4310056248 hasConceptScore W4310056248C111919701 @default.
- W4310056248 hasConceptScore W4310056248C119857082 @default.
- W4310056248 hasConceptScore W4310056248C120314980 @default.
- W4310056248 hasConceptScore W4310056248C124101348 @default.
- W4310056248 hasConceptScore W4310056248C136197465 @default.
- W4310056248 hasConceptScore W4310056248C149635348 @default.
- W4310056248 hasConceptScore W4310056248C151730666 @default.
- W4310056248 hasConceptScore W4310056248C154945302 @default.
- W4310056248 hasConceptScore W4310056248C157764524 @default.
- W4310056248 hasConceptScore W4310056248C191172861 @default.
- W4310056248 hasConceptScore W4310056248C25343380 @default.
- W4310056248 hasConceptScore W4310056248C2779343474 @default.
- W4310056248 hasConceptScore W4310056248C2780513914 @default.
- W4310056248 hasConceptScore W4310056248C31258907 @default.
- W4310056248 hasConceptScore W4310056248C41008148 @default.
- W4310056248 hasConceptScore W4310056248C50644808 @default.
- W4310056248 hasConceptScore W4310056248C555944384 @default.
- W4310056248 hasConceptScore W4310056248C67953723 @default.
- W4310056248 hasConceptScore W4310056248C76155785 @default.
- W4310056248 hasConceptScore W4310056248C79403827 @default.