Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310059881> ?p ?o ?g. }
- W4310059881 endingPage "106019" @default.
- W4310059881 startingPage "106019" @default.
- W4310059881 abstract "Occupational safety has become a major issue in the construction industry over the years. Studies have shown that work-related accidents are mostly caused by the unsafe behaviors of construction workers, implying that they can be avoided with the appropriate safety training. With emerging technologies being increasingly implemented in the construction industry, there is a growing need to improve pedagogical techniques to equip workers with the multidisciplinary skills required to safely accomplish construction tasks. Construction robots are fine examples of such technologies that necessitate more effective training, as their adoption in the field is closely tied to workers’ safety. However, there is a lack of robust safety training methods for working with robots that can ensure the effectiveness of the training process. To address this issue, this study proposes a virtual avatar-based training platform for collaborating with construction robots. The proposed training platform uses workers' physiological signals to evaluate the training process throughout a human-robot collaboration (HRC) task. Using a deep neural network architecture, workers' cognitive load, a crucial factor of effective learning, was identified and linked to safety performance during the HRC task. The study results highlighted the effectiveness of the proposed training platform and its capability to evaluate the cognitive load during the HRC training in construction." @default.
- W4310059881 created "2022-11-30" @default.
- W4310059881 creator A5018691281 @default.
- W4310059881 creator A5035070058 @default.
- W4310059881 creator A5049594879 @default.
- W4310059881 creator A5090989334 @default.
- W4310059881 date "2023-03-01" @default.
- W4310059881 modified "2023-10-18" @default.
- W4310059881 title "Human-robot teaming in construction: Evaluative safety training through the integration of immersive technologies and wearable physiological sensing" @default.
- W4310059881 cites W1557109670 @default.
- W4310059881 cites W1579553668 @default.
- W4310059881 cites W1948751152 @default.
- W4310059881 cites W1967395107 @default.
- W4310059881 cites W1980877068 @default.
- W4310059881 cites W1986564001 @default.
- W4310059881 cites W1995909229 @default.
- W4310059881 cites W2005199016 @default.
- W4310059881 cites W2005674522 @default.
- W4310059881 cites W2020033073 @default.
- W4310059881 cites W2033664463 @default.
- W4310059881 cites W2040084725 @default.
- W4310059881 cites W2040390981 @default.
- W4310059881 cites W2050964906 @default.
- W4310059881 cites W2055493013 @default.
- W4310059881 cites W2057371112 @default.
- W4310059881 cites W2057759632 @default.
- W4310059881 cites W2064675550 @default.
- W4310059881 cites W2065073464 @default.
- W4310059881 cites W2065557762 @default.
- W4310059881 cites W2068478756 @default.
- W4310059881 cites W2082581021 @default.
- W4310059881 cites W2098226206 @default.
- W4310059881 cites W2098813016 @default.
- W4310059881 cites W2109135966 @default.
- W4310059881 cites W2119798890 @default.
- W4310059881 cites W2122311608 @default.
- W4310059881 cites W2152813220 @default.
- W4310059881 cites W2157289187 @default.
- W4310059881 cites W2294161397 @default.
- W4310059881 cites W2468324392 @default.
- W4310059881 cites W2468518589 @default.
- W4310059881 cites W2591818083 @default.
- W4310059881 cites W2601591590 @default.
- W4310059881 cites W2727911935 @default.
- W4310059881 cites W2729659033 @default.
- W4310059881 cites W2768174095 @default.
- W4310059881 cites W2770858796 @default.
- W4310059881 cites W2784116709 @default.
- W4310059881 cites W2789905221 @default.
- W4310059881 cites W2790297521 @default.
- W4310059881 cites W2790490575 @default.
- W4310059881 cites W2800154372 @default.
- W4310059881 cites W2807107191 @default.
- W4310059881 cites W2888248460 @default.
- W4310059881 cites W2889050223 @default.
- W4310059881 cites W2890294192 @default.
- W4310059881 cites W2908370542 @default.
- W4310059881 cites W2914692438 @default.
- W4310059881 cites W2966649515 @default.
- W4310059881 cites W2968915073 @default.
- W4310059881 cites W2978506674 @default.
- W4310059881 cites W2980238711 @default.
- W4310059881 cites W2981372722 @default.
- W4310059881 cites W2989592191 @default.
- W4310059881 cites W2999233838 @default.
- W4310059881 cites W2999318559 @default.
- W4310059881 cites W3001942213 @default.
- W4310059881 cites W3006463027 @default.
- W4310059881 cites W3010621561 @default.
- W4310059881 cites W3014919055 @default.
- W4310059881 cites W3019783530 @default.
- W4310059881 cites W3026765505 @default.
- W4310059881 cites W3035300366 @default.
- W4310059881 cites W3041183752 @default.
- W4310059881 cites W3042300370 @default.
- W4310059881 cites W3042470216 @default.
- W4310059881 cites W3046774844 @default.
- W4310059881 cites W3048648033 @default.
- W4310059881 cites W3089188715 @default.
- W4310059881 cites W3107361860 @default.
- W4310059881 cites W3119811033 @default.
- W4310059881 cites W3123787676 @default.
- W4310059881 cites W3160860059 @default.
- W4310059881 cites W3170698435 @default.
- W4310059881 cites W3181835946 @default.
- W4310059881 cites W3182558613 @default.
- W4310059881 cites W3185855367 @default.
- W4310059881 cites W3188255222 @default.
- W4310059881 cites W3197662152 @default.
- W4310059881 cites W3202943371 @default.
- W4310059881 cites W4205671908 @default.
- W4310059881 cites W4229048171 @default.
- W4310059881 doi "https://doi.org/10.1016/j.ssci.2022.106019" @default.
- W4310059881 hasPublicationYear "2023" @default.
- W4310059881 type Work @default.
- W4310059881 citedByCount "4" @default.
- W4310059881 countsByYear W43100598812023 @default.
- W4310059881 crossrefType "journal-article" @default.