Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310063607> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4310063607 endingPage "113143" @default.
- W4310063607 startingPage "113143" @default.
- W4310063607 abstract "Due to the changeable circumstance and the continuous improvement of ship manufacturing technique, ship radiated noise (SRN) has become more and more complex, which makes it more essential to extract its features. Moreover, the target ships can be quickly classified by feature extraction, thus occupying the advantage of maritime confrontation. For the sake of improved feature extraction technology, a new feature extraction method of SRN based on optimized variational mode decomposition by tuna swarm optimization (TSO-VMD), weighted fluctuation-based dispersion entropy (WFDE) and optimized relevance vector machine by sparrow search algorithm (SSA-RVM) is proposed, moreover, the features of seven types of SRN are extracted respectively. To solve the weakness that decomposition level K and penalty factor α must to be preset artificially in VMD, TSO-VMD is proposed. To select optimal width factor and super parameter of RVM, SSA-RVM is proposed. In the first place, decompose SRN into a range of intrinsic modal functions (IMFs) by TSO-VMD, calculate the K-nearest neighbor mutual information (KNN-MI) value between each IMF and the original signal, and normalize it to obtain normalized KNN-MI (nor-KNNMI). Next, select the IMF with the largest nor-KNNMI value as the feature vector, and 60 samples are randomly selected from the feature vector and their fluctuation-based dispersion entropy (FDE) are calculated. Afterwards, select the nor-KNNMI value corresponding to the feature vector to weight the FDE value to obtain the WFDE value, and use the WFDE value to classify SRN. In the end, input the WFDE value of each sample into SSA-RVM for identification. The experimental results show that the identification rate of the proposed method is over 90%. Therefore, the proposed method can accurately and efficiently extract the features of SRN." @default.
- W4310063607 created "2022-11-30" @default.
- W4310063607 creator A5013178268 @default.
- W4310063607 creator A5060470951 @default.
- W4310063607 creator A5062896696 @default.
- W4310063607 date "2022-12-01" @default.
- W4310063607 modified "2023-09-28" @default.
- W4310063607 title "A new feature extraction method of ship radiated noise based on variational mode decomposition, weighted fluctuation-based dispersion entropy and relevance vector machine" @default.
- W4310063607 cites W2000982976 @default.
- W4310063607 cites W2021223937 @default.
- W4310063607 cites W2031984240 @default.
- W4310063607 cites W2330271718 @default.
- W4310063607 cites W2403986326 @default.
- W4310063607 cites W2591503963 @default.
- W4310063607 cites W2902033916 @default.
- W4310063607 cites W2904515815 @default.
- W4310063607 cites W2905938231 @default.
- W4310063607 cites W2914417854 @default.
- W4310063607 cites W2917255080 @default.
- W4310063607 cites W2920235281 @default.
- W4310063607 cites W2945706449 @default.
- W4310063607 cites W2948015386 @default.
- W4310063607 cites W2973605088 @default.
- W4310063607 cites W2980203978 @default.
- W4310063607 cites W2981918158 @default.
- W4310063607 cites W2989726923 @default.
- W4310063607 cites W2997718270 @default.
- W4310063607 cites W2998553334 @default.
- W4310063607 cites W3001423250 @default.
- W4310063607 cites W3005876912 @default.
- W4310063607 cites W3089152679 @default.
- W4310063607 cites W3094654122 @default.
- W4310063607 cites W3106038282 @default.
- W4310063607 cites W3129877967 @default.
- W4310063607 cites W3130491436 @default.
- W4310063607 cites W3138452780 @default.
- W4310063607 cites W3153505674 @default.
- W4310063607 cites W3196145487 @default.
- W4310063607 cites W3214472537 @default.
- W4310063607 cites W4200450234 @default.
- W4310063607 cites W4205980158 @default.
- W4310063607 cites W4229037488 @default.
- W4310063607 cites W4281963086 @default.
- W4310063607 cites W4283833772 @default.
- W4310063607 cites W2913113846 @default.
- W4310063607 doi "https://doi.org/10.1016/j.oceaneng.2022.113143" @default.
- W4310063607 hasPublicationYear "2022" @default.
- W4310063607 type Work @default.
- W4310063607 citedByCount "10" @default.
- W4310063607 countsByYear W43100636072023 @default.
- W4310063607 crossrefType "journal-article" @default.
- W4310063607 hasAuthorship W4310063607A5013178268 @default.
- W4310063607 hasAuthorship W4310063607A5060470951 @default.
- W4310063607 hasAuthorship W4310063607A5062896696 @default.
- W4310063607 hasConcept C106301342 @default.
- W4310063607 hasConcept C11413529 @default.
- W4310063607 hasConcept C121332964 @default.
- W4310063607 hasConcept C12267149 @default.
- W4310063607 hasConcept C14948415 @default.
- W4310063607 hasConcept C153180895 @default.
- W4310063607 hasConcept C154945302 @default.
- W4310063607 hasConcept C33923547 @default.
- W4310063607 hasConcept C41008148 @default.
- W4310063607 hasConcept C52622490 @default.
- W4310063607 hasConcept C62520636 @default.
- W4310063607 hasConcept C83665646 @default.
- W4310063607 hasConceptScore W4310063607C106301342 @default.
- W4310063607 hasConceptScore W4310063607C11413529 @default.
- W4310063607 hasConceptScore W4310063607C121332964 @default.
- W4310063607 hasConceptScore W4310063607C12267149 @default.
- W4310063607 hasConceptScore W4310063607C14948415 @default.
- W4310063607 hasConceptScore W4310063607C153180895 @default.
- W4310063607 hasConceptScore W4310063607C154945302 @default.
- W4310063607 hasConceptScore W4310063607C33923547 @default.
- W4310063607 hasConceptScore W4310063607C41008148 @default.
- W4310063607 hasConceptScore W4310063607C52622490 @default.
- W4310063607 hasConceptScore W4310063607C62520636 @default.
- W4310063607 hasConceptScore W4310063607C83665646 @default.
- W4310063607 hasFunder F4320321001 @default.
- W4310063607 hasFunder F4320325367 @default.
- W4310063607 hasLocation W43100636071 @default.
- W4310063607 hasOpenAccess W4310063607 @default.
- W4310063607 hasPrimaryLocation W43100636071 @default.
- W4310063607 hasRelatedWork W2126100045 @default.
- W4310063607 hasRelatedWork W2153189372 @default.
- W4310063607 hasRelatedWork W2336974148 @default.
- W4310063607 hasRelatedWork W2381773606 @default.
- W4310063607 hasRelatedWork W2734744645 @default.
- W4310063607 hasRelatedWork W2897410528 @default.
- W4310063607 hasRelatedWork W4225360039 @default.
- W4310063607 hasRelatedWork W4255430809 @default.
- W4310063607 hasRelatedWork W2187500075 @default.
- W4310063607 hasRelatedWork W2345184372 @default.
- W4310063607 hasVolume "266" @default.
- W4310063607 isParatext "false" @default.
- W4310063607 isRetracted "false" @default.
- W4310063607 workType "article" @default.