Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310067553> ?p ?o ?g. }
- W4310067553 endingPage "100160" @default.
- W4310067553 startingPage "100160" @default.
- W4310067553 abstract "Deep learning has been widely used to analyze digitized hematoxylin and eosin (H&E)-stained histopathology whole slide images. Automated cancer segmentation using deep learning can be used to diagnose malignancy and to find novel morphological patterns to predict molecular subtypes. To train pixel-wise cancer segmentation models, manual annotation from pathologists is generally a bottleneck due to its time-consuming nature. In this paper, we propose Deep Interactive Learning with a pretrained segmentation model from a different cancer type to reduce manual annotation time. Instead of annotating all pixels from cancer and non-cancer regions on giga-pixel whole slide images, an iterative process of annotating mislabeled regions from a segmentation model and training/finetuning the model with the additional annotation can reduce the time. Especially, employing a pretrained segmentation model can further reduce the time than starting annotation from scratch. We trained an accurate ovarian cancer segmentation model with a pretrained breast segmentation model by 3.5 hours of manual annotation which achieved intersection-over-union of 0.74, recall of 0.86, and precision of 0.84. With automatically extracted high-grade serous ovarian cancer patches, we attempted to train an additional classification deep learning model to predict BRCA mutation. The segmentation model and code have been released at https://github.com/MSKCC-Computational-Pathology/DMMN-ovary." @default.
- W4310067553 created "2022-11-30" @default.
- W4310067553 creator A5002062627 @default.
- W4310067553 creator A5011818793 @default.
- W4310067553 creator A5014100513 @default.
- W4310067553 creator A5015952679 @default.
- W4310067553 creator A5030446198 @default.
- W4310067553 creator A5045514288 @default.
- W4310067553 creator A5046514229 @default.
- W4310067553 creator A5089185942 @default.
- W4310067553 date "2023-01-01" @default.
- W4310067553 modified "2023-10-14" @default.
- W4310067553 title "Deep Interactive Learning-based ovarian cancer segmentation of H&E-stained whole slide images to study morphological patterns of BRCA mutation" @default.
- W4310067553 cites W2031489346 @default.
- W4310067553 cites W2040414046 @default.
- W4310067553 cites W2088989339 @default.
- W4310067553 cites W2117539524 @default.
- W4310067553 cites W2133059825 @default.
- W4310067553 cites W2135409663 @default.
- W4310067553 cites W2395611524 @default.
- W4310067553 cites W2592929672 @default.
- W4310067553 cites W2607075141 @default.
- W4310067553 cites W2745994405 @default.
- W4310067553 cites W2751723768 @default.
- W4310067553 cites W2760946358 @default.
- W4310067553 cites W2772723798 @default.
- W4310067553 cites W2883567318 @default.
- W4310067553 cites W2889232360 @default.
- W4310067553 cites W2897434820 @default.
- W4310067553 cites W2898397001 @default.
- W4310067553 cites W2917476978 @default.
- W4310067553 cites W2919115771 @default.
- W4310067553 cites W2922239620 @default.
- W4310067553 cites W2948930564 @default.
- W4310067553 cites W2956228567 @default.
- W4310067553 cites W2963881378 @default.
- W4310067553 cites W2967444033 @default.
- W4310067553 cites W2972214324 @default.
- W4310067553 cites W2982406227 @default.
- W4310067553 cites W2994977341 @default.
- W4310067553 cites W3044996171 @default.
- W4310067553 cites W3089090082 @default.
- W4310067553 cites W3099319035 @default.
- W4310067553 cites W3099458507 @default.
- W4310067553 cites W3124025267 @default.
- W4310067553 cites W3135547872 @default.
- W4310067553 cites W3159213628 @default.
- W4310067553 cites W3160261825 @default.
- W4310067553 cites W3178519255 @default.
- W4310067553 cites W3186317940 @default.
- W4310067553 cites W3188212740 @default.
- W4310067553 cites W3197713479 @default.
- W4310067553 cites W3203816956 @default.
- W4310067553 cites W3204013916 @default.
- W4310067553 cites W3205605830 @default.
- W4310067553 cites W3210482027 @default.
- W4310067553 cites W3216119570 @default.
- W4310067553 cites W4206841660 @default.
- W4310067553 doi "https://doi.org/10.1016/j.jpi.2022.100160" @default.
- W4310067553 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36536772" @default.
- W4310067553 hasPublicationYear "2023" @default.
- W4310067553 type Work @default.
- W4310067553 citedByCount "4" @default.
- W4310067553 countsByYear W43100675532022 @default.
- W4310067553 countsByYear W43100675532023 @default.
- W4310067553 crossrefType "journal-article" @default.
- W4310067553 hasAuthorship W4310067553A5002062627 @default.
- W4310067553 hasAuthorship W4310067553A5011818793 @default.
- W4310067553 hasAuthorship W4310067553A5014100513 @default.
- W4310067553 hasAuthorship W4310067553A5015952679 @default.
- W4310067553 hasAuthorship W4310067553A5030446198 @default.
- W4310067553 hasAuthorship W4310067553A5045514288 @default.
- W4310067553 hasAuthorship W4310067553A5046514229 @default.
- W4310067553 hasAuthorship W4310067553A5089185942 @default.
- W4310067553 hasBestOaLocation W43100675531 @default.
- W4310067553 hasConcept C108583219 @default.
- W4310067553 hasConcept C124504099 @default.
- W4310067553 hasConcept C153180895 @default.
- W4310067553 hasConcept C154945302 @default.
- W4310067553 hasConcept C2776321320 @default.
- W4310067553 hasConcept C2777522853 @default.
- W4310067553 hasConcept C41008148 @default.
- W4310067553 hasConcept C89600930 @default.
- W4310067553 hasConceptScore W4310067553C108583219 @default.
- W4310067553 hasConceptScore W4310067553C124504099 @default.
- W4310067553 hasConceptScore W4310067553C153180895 @default.
- W4310067553 hasConceptScore W4310067553C154945302 @default.
- W4310067553 hasConceptScore W4310067553C2776321320 @default.
- W4310067553 hasConceptScore W4310067553C2777522853 @default.
- W4310067553 hasConceptScore W4310067553C41008148 @default.
- W4310067553 hasConceptScore W4310067553C89600930 @default.
- W4310067553 hasFunder F4320322120 @default.
- W4310067553 hasFunder F4320332161 @default.
- W4310067553 hasFunder F4320337351 @default.
- W4310067553 hasLocation W43100675531 @default.
- W4310067553 hasLocation W43100675532 @default.
- W4310067553 hasLocation W43100675533 @default.
- W4310067553 hasLocation W43100675534 @default.