Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310068404> ?p ?o ?g. }
- W4310068404 endingPage "105634" @default.
- W4310068404 startingPage "105634" @default.
- W4310068404 abstract "Maritime transport is an alternative modal logistic in transporting cargo for long distances and in large quantities. However, the logistical planning for this modal becomes costly due to the uncertainties, such as climatic conditions, cargo types, and port characteristics. Therefore, estimating the stay times of ships becomes an essential objective for the planning and scheduling of the waterway modal. Determining the time frame the port has to operate the ship, based on the expected time that ships stay moored, is a challenge for the port management. In the present study, we collected data on the main cargo movements in Brazilian ports in 2018 to develop a model for predicting the stay time of ships, using algorithms based on decision tree models. There are no studies in the literature on models for predicting the stay time of ships, which is the gap to be filled in this research. In addition, an exploratory data analysis was performed to discover the variables that most influence the stay time. This research used several classification machine learning algorithms (support vector machines, gradient boosting, decision tree, random forest, among others) to build stay time prediction. As a result, the best model generated was that of random forests that obtained acceptable performance, with accuracy and f1-score above 73%, and train and test times around 14 s and the most important features to the model involve geographical and cargo characteristics. Therefore, it is possible to use them in real environments to develop logistic planning of the waterway modal." @default.
- W4310068404 created "2022-11-30" @default.
- W4310068404 creator A5014047302 @default.
- W4310068404 creator A5021741236 @default.
- W4310068404 creator A5022873470 @default.
- W4310068404 creator A5042527714 @default.
- W4310068404 creator A5061162092 @default.
- W4310068404 date "2023-01-01" @default.
- W4310068404 modified "2023-10-16" @default.
- W4310068404 title "A decision tree model for the prediction of the stay time of ships in Brazilian ports" @default.
- W4310068404 cites W2021450881 @default.
- W4310068404 cites W2058600738 @default.
- W4310068404 cites W2059499091 @default.
- W4310068404 cites W2070230130 @default.
- W4310068404 cites W2072979369 @default.
- W4310068404 cites W2077815620 @default.
- W4310068404 cites W2080951458 @default.
- W4310068404 cites W2106814576 @default.
- W4310068404 cites W2146993988 @default.
- W4310068404 cites W2150347838 @default.
- W4310068404 cites W2153344813 @default.
- W4310068404 cites W2166880312 @default.
- W4310068404 cites W2463099609 @default.
- W4310068404 cites W2519229529 @default.
- W4310068404 cites W2623951421 @default.
- W4310068404 cites W2755012395 @default.
- W4310068404 cites W2794657807 @default.
- W4310068404 cites W2905243775 @default.
- W4310068404 cites W2921555380 @default.
- W4310068404 cites W2923625485 @default.
- W4310068404 cites W2978790554 @default.
- W4310068404 cites W2981969782 @default.
- W4310068404 cites W2995533819 @default.
- W4310068404 cites W2999036083 @default.
- W4310068404 cites W3003906255 @default.
- W4310068404 cites W3011613156 @default.
- W4310068404 cites W3025204993 @default.
- W4310068404 cites W3038199570 @default.
- W4310068404 cites W3108671495 @default.
- W4310068404 cites W3129499366 @default.
- W4310068404 cites W3161427435 @default.
- W4310068404 cites W3189035319 @default.
- W4310068404 cites W4200297221 @default.
- W4310068404 cites W4206209375 @default.
- W4310068404 cites W4214575762 @default.
- W4310068404 cites W4220879402 @default.
- W4310068404 cites W4287879957 @default.
- W4310068404 cites W4292787714 @default.
- W4310068404 cites W4293168170 @default.
- W4310068404 doi "https://doi.org/10.1016/j.engappai.2022.105634" @default.
- W4310068404 hasPublicationYear "2023" @default.
- W4310068404 type Work @default.
- W4310068404 citedByCount "4" @default.
- W4310068404 countsByYear W43100684042023 @default.
- W4310068404 crossrefType "journal-article" @default.
- W4310068404 hasAuthorship W4310068404A5014047302 @default.
- W4310068404 hasAuthorship W4310068404A5021741236 @default.
- W4310068404 hasAuthorship W4310068404A5022873470 @default.
- W4310068404 hasAuthorship W4310068404A5042527714 @default.
- W4310068404 hasAuthorship W4310068404A5061162092 @default.
- W4310068404 hasConcept C107327155 @default.
- W4310068404 hasConcept C113174947 @default.
- W4310068404 hasConcept C119599485 @default.
- W4310068404 hasConcept C119857082 @default.
- W4310068404 hasConcept C121332964 @default.
- W4310068404 hasConcept C12267149 @default.
- W4310068404 hasConcept C127413603 @default.
- W4310068404 hasConcept C134306372 @default.
- W4310068404 hasConcept C154945302 @default.
- W4310068404 hasConcept C162324750 @default.
- W4310068404 hasConcept C169258074 @default.
- W4310068404 hasConcept C185592680 @default.
- W4310068404 hasConcept C188027245 @default.
- W4310068404 hasConcept C206729178 @default.
- W4310068404 hasConcept C21547014 @default.
- W4310068404 hasConcept C28761237 @default.
- W4310068404 hasConcept C32802771 @default.
- W4310068404 hasConcept C33923547 @default.
- W4310068404 hasConcept C41008148 @default.
- W4310068404 hasConcept C42475967 @default.
- W4310068404 hasConcept C62520636 @default.
- W4310068404 hasConcept C71139939 @default.
- W4310068404 hasConcept C84525736 @default.
- W4310068404 hasConceptScore W4310068404C107327155 @default.
- W4310068404 hasConceptScore W4310068404C113174947 @default.
- W4310068404 hasConceptScore W4310068404C119599485 @default.
- W4310068404 hasConceptScore W4310068404C119857082 @default.
- W4310068404 hasConceptScore W4310068404C121332964 @default.
- W4310068404 hasConceptScore W4310068404C12267149 @default.
- W4310068404 hasConceptScore W4310068404C127413603 @default.
- W4310068404 hasConceptScore W4310068404C134306372 @default.
- W4310068404 hasConceptScore W4310068404C154945302 @default.
- W4310068404 hasConceptScore W4310068404C162324750 @default.
- W4310068404 hasConceptScore W4310068404C169258074 @default.
- W4310068404 hasConceptScore W4310068404C185592680 @default.
- W4310068404 hasConceptScore W4310068404C188027245 @default.
- W4310068404 hasConceptScore W4310068404C206729178 @default.
- W4310068404 hasConceptScore W4310068404C21547014 @default.