Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310068861> ?p ?o ?g. }
- W4310068861 endingPage "6533" @default.
- W4310068861 startingPage "6526" @default.
- W4310068861 abstract "Peptides are known to possess a plethora of beneficial properties and activities: antimicrobial, anticancer, anti-inflammatory or the ability to cross the blood-brain barrier are only a few examples of their functional diversity. For this reason, bioinformaticians are constantly developing and upgrading models to predict their activity in silico, generating a steadily increasing number of available tools. Although these efforts have provided fruitful outcomes in the field, the vast and diverse amount of resources for peptide prediction can turn a simple prediction into an overwhelming searching process to find the optimal tool. This minireview aims at providing a systematic and accessible analysis of the complex ecosystem of peptide activity prediction, showcasing the variability of existing models for peptide assessment, their domain specialization and popularity. Moreover, we also assess the reproducibility of such bioinformatics tools and describe tendencies observed in their development. The list of tools is available under https://biogenies.info/peptide-prediction-list/." @default.
- W4310068861 created "2022-11-30" @default.
- W4310068861 creator A5002675555 @default.
- W4310068861 creator A5010277918 @default.
- W4310068861 creator A5015968787 @default.
- W4310068861 creator A5025098840 @default.
- W4310068861 creator A5025858582 @default.
- W4310068861 creator A5082882823 @default.
- W4310068861 creator A5086679690 @default.
- W4310068861 date "2022-01-01" @default.
- W4310068861 modified "2023-10-16" @default.
- W4310068861 title "The dynamic landscape of peptide activity prediction" @default.
- W4310068861 cites W1860382351 @default.
- W4310068861 cites W2078076548 @default.
- W4310068861 cites W2153099927 @default.
- W4310068861 cites W2163551613 @default.
- W4310068861 cites W2331218777 @default.
- W4310068861 cites W2511835277 @default.
- W4310068861 cites W2588463038 @default.
- W4310068861 cites W2603655232 @default.
- W4310068861 cites W2749122933 @default.
- W4310068861 cites W2791848964 @default.
- W4310068861 cites W2794260489 @default.
- W4310068861 cites W2912354751 @default.
- W4310068861 cites W2919285837 @default.
- W4310068861 cites W2999580270 @default.
- W4310068861 cites W3017630416 @default.
- W4310068861 cites W3027376788 @default.
- W4310068861 cites W3036144909 @default.
- W4310068861 cites W3043115370 @default.
- W4310068861 cites W3092406486 @default.
- W4310068861 cites W3094708881 @default.
- W4310068861 cites W3096216799 @default.
- W4310068861 cites W3107034655 @default.
- W4310068861 cites W3117992890 @default.
- W4310068861 cites W3121559085 @default.
- W4310068861 cites W3122585911 @default.
- W4310068861 cites W3127712659 @default.
- W4310068861 cites W3158459184 @default.
- W4310068861 cites W3166290213 @default.
- W4310068861 cites W3178663131 @default.
- W4310068861 cites W3188372451 @default.
- W4310068861 cites W3197433610 @default.
- W4310068861 cites W3200707343 @default.
- W4310068861 cites W3201949410 @default.
- W4310068861 cites W3203053846 @default.
- W4310068861 cites W3205925781 @default.
- W4310068861 cites W4213118299 @default.
- W4310068861 cites W4213430678 @default.
- W4310068861 cites W4214943162 @default.
- W4310068861 cites W4220698880 @default.
- W4310068861 cites W4225983992 @default.
- W4310068861 cites W4226148785 @default.
- W4310068861 cites W4292678539 @default.
- W4310068861 cites W4306730972 @default.
- W4310068861 doi "https://doi.org/10.1016/j.csbj.2022.11.043" @default.
- W4310068861 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36467580" @default.
- W4310068861 hasPublicationYear "2022" @default.
- W4310068861 type Work @default.
- W4310068861 citedByCount "3" @default.
- W4310068861 countsByYear W43100688612023 @default.
- W4310068861 crossrefType "journal-article" @default.
- W4310068861 hasAuthorship W4310068861A5002675555 @default.
- W4310068861 hasAuthorship W4310068861A5010277918 @default.
- W4310068861 hasAuthorship W4310068861A5015968787 @default.
- W4310068861 hasAuthorship W4310068861A5025098840 @default.
- W4310068861 hasAuthorship W4310068861A5025858582 @default.
- W4310068861 hasAuthorship W4310068861A5082882823 @default.
- W4310068861 hasAuthorship W4310068861A5086679690 @default.
- W4310068861 hasBestOaLocation W43100688611 @default.
- W4310068861 hasConcept C104317684 @default.
- W4310068861 hasConcept C111919701 @default.
- W4310068861 hasConcept C119857082 @default.
- W4310068861 hasConcept C134306372 @default.
- W4310068861 hasConcept C15744967 @default.
- W4310068861 hasConcept C202444582 @default.
- W4310068861 hasConcept C2522767166 @default.
- W4310068861 hasConcept C2775905019 @default.
- W4310068861 hasConcept C2780586970 @default.
- W4310068861 hasConcept C33923547 @default.
- W4310068861 hasConcept C36503486 @default.
- W4310068861 hasConcept C41008148 @default.
- W4310068861 hasConcept C45804977 @default.
- W4310068861 hasConcept C55493867 @default.
- W4310068861 hasConcept C60644358 @default.
- W4310068861 hasConcept C70721500 @default.
- W4310068861 hasConcept C77805123 @default.
- W4310068861 hasConcept C86803240 @default.
- W4310068861 hasConcept C9652623 @default.
- W4310068861 hasConcept C98045186 @default.
- W4310068861 hasConceptScore W4310068861C104317684 @default.
- W4310068861 hasConceptScore W4310068861C111919701 @default.
- W4310068861 hasConceptScore W4310068861C119857082 @default.
- W4310068861 hasConceptScore W4310068861C134306372 @default.
- W4310068861 hasConceptScore W4310068861C15744967 @default.
- W4310068861 hasConceptScore W4310068861C202444582 @default.
- W4310068861 hasConceptScore W4310068861C2522767166 @default.
- W4310068861 hasConceptScore W4310068861C2775905019 @default.