Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310073244> ?p ?o ?g. }
- W4310073244 endingPage "818" @default.
- W4310073244 startingPage "797" @default.
- W4310073244 abstract "Whale optimization algorithm (WOA) tends to fall into the local optimum and fails to converge quickly in solving complex problems. To address the shortcomings, an improved WOA (QGBWOA) is proposed in this work. First, quasi-opposition-based learning is introduced to enhance the ability of WOA to search for optimal solutions. Second, a Gaussian barebone mechanism is embedded to promote diversity and expand the scope of the solution space in WOA. To verify the advantages of QGBWOA, comparison experiments between QGBWOA and its comparison peers were carried out on CEC 2014 with dimensions 10, 30, 50, and 100 and on CEC 2020 test with dimension 30. Furthermore, the performance results were tested using Wilcoxon signed-rank (WS), Friedman test, and post hoc statistical tests for statistical analysis. Convergence accuracy and speed are remarkably improved, as shown by experimental results. Finally, feature selection and multi-threshold image segmentation applications are demonstrated to validate the ability of QGBWOA to solve complex real-world problems. QGBWOA proves its superiority over compared algorithms in feature selection and multi-threshold image segmentation by performing several evaluation metrics.The online version contains supplementary material available at 10.1007/s42235-022-00297-8." @default.
- W4310073244 created "2022-11-30" @default.
- W4310073244 creator A5004212956 @default.
- W4310073244 creator A5024138459 @default.
- W4310073244 creator A5050824653 @default.
- W4310073244 creator A5054100996 @default.
- W4310073244 creator A5060969271 @default.
- W4310073244 date "2022-11-28" @default.
- W4310073244 modified "2023-10-14" @default.
- W4310073244 title "Boosting Whale Optimizer with Quasi-Oppositional Learning and Gaussian Barebone for Feature Selection and COVID-19 Image Segmentation" @default.
- W4310073244 cites W1523741643 @default.
- W4310073244 cites W1595159159 @default.
- W4310073244 cites W2061438946 @default.
- W4310073244 cites W2066173509 @default.
- W4310073244 cites W2093195672 @default.
- W4310073244 cites W2127931254 @default.
- W4310073244 cites W2133665775 @default.
- W4310073244 cites W2141358266 @default.
- W4310073244 cites W2141983208 @default.
- W4310073244 cites W2152195021 @default.
- W4310073244 cites W2157833270 @default.
- W4310073244 cites W2158392724 @default.
- W4310073244 cites W2162745921 @default.
- W4310073244 cites W2232317135 @default.
- W4310073244 cites W2290883490 @default.
- W4310073244 cites W2606696865 @default.
- W4310073244 cites W2804103614 @default.
- W4310073244 cites W2886555869 @default.
- W4310073244 cites W2889083964 @default.
- W4310073244 cites W2896859906 @default.
- W4310073244 cites W2901888116 @default.
- W4310073244 cites W2907045028 @default.
- W4310073244 cites W2912733464 @default.
- W4310073244 cites W2914242080 @default.
- W4310073244 cites W2919979744 @default.
- W4310073244 cites W2920726522 @default.
- W4310073244 cites W2922396237 @default.
- W4310073244 cites W2929255206 @default.
- W4310073244 cites W2955693036 @default.
- W4310073244 cites W2969409134 @default.
- W4310073244 cites W2978461564 @default.
- W4310073244 cites W2979955841 @default.
- W4310073244 cites W2980093184 @default.
- W4310073244 cites W2990991805 @default.
- W4310073244 cites W2998973029 @default.
- W4310073244 cites W3004565805 @default.
- W4310073244 cites W3014974411 @default.
- W4310073244 cites W3016205391 @default.
- W4310073244 cites W3021348825 @default.
- W4310073244 cites W3088271618 @default.
- W4310073244 cites W3093844748 @default.
- W4310073244 cites W3094536368 @default.
- W4310073244 cites W3104887532 @default.
- W4310073244 cites W3108785343 @default.
- W4310073244 cites W3112535140 @default.
- W4310073244 cites W3115211887 @default.
- W4310073244 cites W3115926713 @default.
- W4310073244 cites W3118408813 @default.
- W4310073244 cites W3119140213 @default.
- W4310073244 cites W3119466546 @default.
- W4310073244 cites W3122811529 @default.
- W4310073244 cites W3123918831 @default.
- W4310073244 cites W3126971459 @default.
- W4310073244 cites W3130372645 @default.
- W4310073244 cites W3134651880 @default.
- W4310073244 cites W3141579742 @default.
- W4310073244 cites W3143746401 @default.
- W4310073244 cites W3157768705 @default.
- W4310073244 cites W3158141941 @default.
- W4310073244 cites W3166279068 @default.
- W4310073244 cites W3167354162 @default.
- W4310073244 cites W3170484221 @default.
- W4310073244 cites W3171719335 @default.
- W4310073244 cites W3173989800 @default.
- W4310073244 cites W3176757732 @default.
- W4310073244 cites W3177832696 @default.
- W4310073244 cites W3180236923 @default.
- W4310073244 cites W3194133090 @default.
- W4310073244 cites W3197192235 @default.
- W4310073244 cites W3197557242 @default.
- W4310073244 cites W3197763142 @default.
- W4310073244 cites W3199686126 @default.
- W4310073244 cites W3202724793 @default.
- W4310073244 cites W3204627905 @default.
- W4310073244 cites W3208125829 @default.
- W4310073244 cites W3209790225 @default.
- W4310073244 cites W3211639065 @default.
- W4310073244 cites W3214729164 @default.
- W4310073244 cites W4205789154 @default.
- W4310073244 cites W4206602097 @default.
- W4310073244 cites W4206740177 @default.
- W4310073244 cites W4210587805 @default.
- W4310073244 cites W4210607649 @default.
- W4310073244 cites W4210719617 @default.
- W4310073244 cites W4212993228 @default.
- W4310073244 cites W4213428809 @default.
- W4310073244 cites W4214646555 @default.
- W4310073244 cites W4221090179 @default.