Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310075141> ?p ?o ?g. }
- W4310075141 endingPage "106949" @default.
- W4310075141 startingPage "106949" @default.
- W4310075141 abstract "Predicting damage grade and rehabilitation interventions is important, especially in the aftermath of moderate to strong earthquakes as prioritization of post-earthquake housing recovery needs information regarding the damage extent. Damage prediction is generally performed using fragility functions, which are generally associated with large uncertainties. Moreover, availability and representativeness of fragility functions for a region affected by an earthquake is not always a given. A more realistic prediction of damage might be obtained from methods that rely on relevant attributes of affected buildings. Artificial intelligence-based formulations have huge prospect in this regard. Using the ground shaking intensity measure and detailed building specific features of 549,251 buildings affected by the 2015 Gorkha earthquake in Nepal, this paper assesses efficacy of four common machine learning algorithms for damage grade and rehabilitation intervention prediction. Decision tree, random forest, XGBoost, and logistic regression algorithms are used to prepare machine learning models and test their performance. The XGBoost algorithm is found to predict building collapse and strengthening more accurately than the other algorithms. Moreover, feature importance from the XGBoost model identifies 19 of the top 20 most important features as relevant for both damage grade and rehabilitation intervention prediction." @default.
- W4310075141 created "2022-11-30" @default.
- W4310075141 creator A5015910225 @default.
- W4310075141 creator A5017057181 @default.
- W4310075141 creator A5050507387 @default.
- W4310075141 creator A5083012821 @default.
- W4310075141 date "2023-02-01" @default.
- W4310075141 modified "2023-09-30" @default.
- W4310075141 title "Earthquake damage and rehabilitation intervention prediction using machine learning" @default.
- W4310075141 cites W1789016606 @default.
- W4310075141 cites W1989642641 @default.
- W4310075141 cites W2017764723 @default.
- W4310075141 cites W2024223694 @default.
- W4310075141 cites W2033450452 @default.
- W4310075141 cites W2084471984 @default.
- W4310075141 cites W2126426627 @default.
- W4310075141 cites W2148143831 @default.
- W4310075141 cites W2327190446 @default.
- W4310075141 cites W2573263553 @default.
- W4310075141 cites W2620676483 @default.
- W4310075141 cites W2800515755 @default.
- W4310075141 cites W2807042118 @default.
- W4310075141 cites W2809351552 @default.
- W4310075141 cites W2898158620 @default.
- W4310075141 cites W2906484232 @default.
- W4310075141 cites W2911964244 @default.
- W4310075141 cites W2915285190 @default.
- W4310075141 cites W2921054025 @default.
- W4310075141 cites W2963613787 @default.
- W4310075141 cites W2974551902 @default.
- W4310075141 cites W2991592775 @default.
- W4310075141 cites W3038898598 @default.
- W4310075141 cites W3046705597 @default.
- W4310075141 cites W3088849575 @default.
- W4310075141 cites W3102476541 @default.
- W4310075141 cites W3127302216 @default.
- W4310075141 cites W3147805828 @default.
- W4310075141 cites W4281625102 @default.
- W4310075141 cites W569092718 @default.
- W4310075141 cites W614959761 @default.
- W4310075141 doi "https://doi.org/10.1016/j.engfailanal.2022.106949" @default.
- W4310075141 hasPublicationYear "2023" @default.
- W4310075141 type Work @default.
- W4310075141 citedByCount "7" @default.
- W4310075141 countsByYear W43100751412023 @default.
- W4310075141 crossrefType "journal-article" @default.
- W4310075141 hasAuthorship W4310075141A5015910225 @default.
- W4310075141 hasAuthorship W4310075141A5017057181 @default.
- W4310075141 hasAuthorship W4310075141A5050507387 @default.
- W4310075141 hasAuthorship W4310075141A5083012821 @default.
- W4310075141 hasConcept C105795698 @default.
- W4310075141 hasConcept C118552586 @default.
- W4310075141 hasConcept C119857082 @default.
- W4310075141 hasConcept C127413603 @default.
- W4310075141 hasConcept C138885662 @default.
- W4310075141 hasConcept C147789679 @default.
- W4310075141 hasConcept C151956035 @default.
- W4310075141 hasConcept C154945302 @default.
- W4310075141 hasConcept C169258074 @default.
- W4310075141 hasConcept C185592680 @default.
- W4310075141 hasConcept C1862650 @default.
- W4310075141 hasConcept C2776401178 @default.
- W4310075141 hasConcept C2777615720 @default.
- W4310075141 hasConcept C2778818304 @default.
- W4310075141 hasConcept C2780665704 @default.
- W4310075141 hasConcept C33923547 @default.
- W4310075141 hasConcept C37381756 @default.
- W4310075141 hasConcept C41008148 @default.
- W4310075141 hasConcept C41895202 @default.
- W4310075141 hasConcept C539667460 @default.
- W4310075141 hasConcept C71924100 @default.
- W4310075141 hasConcept C77595967 @default.
- W4310075141 hasConcept C80191262 @default.
- W4310075141 hasConcept C84525736 @default.
- W4310075141 hasConceptScore W4310075141C105795698 @default.
- W4310075141 hasConceptScore W4310075141C118552586 @default.
- W4310075141 hasConceptScore W4310075141C119857082 @default.
- W4310075141 hasConceptScore W4310075141C127413603 @default.
- W4310075141 hasConceptScore W4310075141C138885662 @default.
- W4310075141 hasConceptScore W4310075141C147789679 @default.
- W4310075141 hasConceptScore W4310075141C151956035 @default.
- W4310075141 hasConceptScore W4310075141C154945302 @default.
- W4310075141 hasConceptScore W4310075141C169258074 @default.
- W4310075141 hasConceptScore W4310075141C185592680 @default.
- W4310075141 hasConceptScore W4310075141C1862650 @default.
- W4310075141 hasConceptScore W4310075141C2776401178 @default.
- W4310075141 hasConceptScore W4310075141C2777615720 @default.
- W4310075141 hasConceptScore W4310075141C2778818304 @default.
- W4310075141 hasConceptScore W4310075141C2780665704 @default.
- W4310075141 hasConceptScore W4310075141C33923547 @default.
- W4310075141 hasConceptScore W4310075141C37381756 @default.
- W4310075141 hasConceptScore W4310075141C41008148 @default.
- W4310075141 hasConceptScore W4310075141C41895202 @default.
- W4310075141 hasConceptScore W4310075141C539667460 @default.
- W4310075141 hasConceptScore W4310075141C71924100 @default.
- W4310075141 hasConceptScore W4310075141C77595967 @default.
- W4310075141 hasConceptScore W4310075141C80191262 @default.
- W4310075141 hasConceptScore W4310075141C84525736 @default.