Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310076807> ?p ?o ?g. }
- W4310076807 endingPage "109851" @default.
- W4310076807 startingPage "109851" @default.
- W4310076807 abstract "The world has been undergoing the most ever unprecedented circumstances caused by the coronavirus pandemic, which is having a devastating global effect in different aspects of life. Since there are not effective antiviral treatments for Covid-19 yet, it is crucial to early detect and monitor the progression of the disease, thereby helping to reduce mortality. While different measures are being used to combat the virus, medical imaging techniques have been examined to support doctors in diagnosing the disease. In this paper, we present a practical solution for the detection of Covid-19 from chest X-ray (CXR) and lung computed tomography (LCT) images, exploiting cutting-edge Machine Learning techniques. As the main classification engine, we make use of EfficientNet and MixNet, two recently developed families of deep neural networks. Furthermore, to make the training more effective and efficient, we apply three transfer learning algorithms. The ultimate aim is to build a reliable expert system to detect Covid-19 from different sources of images, making it be a multi-purpose AI diagnosing system. We validated our proposed approach using four real-world datasets. The first two are CXR datasets consist of 15,000 and 17,905 images, respectively. The other two are LCT datasets with 2,482 and 411,528 images, respectively. The five-fold cross-validation methodology was used to evaluate the approach, where the dataset is split into five parts, and accordingly the evaluation is conducted in five rounds. By each evaluation, four parts are combined to form the training data, and the remaining one is used for testing. We obtained an encouraging prediction performance for all the considered datasets. In all the configurations, the obtained accuracy is always larger than 95.0%. Compared to various existing studies, our approach yields a substantial performance gain. Moreover, such an improvement is statistically significant." @default.
- W4310076807 created "2022-11-30" @default.
- W4310076807 creator A5021894709 @default.
- W4310076807 creator A5023235306 @default.
- W4310076807 creator A5035041500 @default.
- W4310076807 creator A5060090579 @default.
- W4310076807 date "2023-01-01" @default.
- W4310076807 modified "2023-09-25" @default.
- W4310076807 title "Automatic detection of Covid-19 from chest X-ray and lung computed tomography images using deep neural networks and transfer learning" @default.
- W4310076807 cites W2117539524 @default.
- W4310076807 cites W2395579298 @default.
- W4310076807 cites W2752788177 @default.
- W4310076807 cites W2790979755 @default.
- W4310076807 cites W2963929932 @default.
- W4310076807 cites W3004874934 @default.
- W4310076807 cites W3011149445 @default.
- W4310076807 cites W3011924739 @default.
- W4310076807 cites W3012084069 @default.
- W4310076807 cites W3012994592 @default.
- W4310076807 cites W3013601031 @default.
- W4310076807 cites W3014289208 @default.
- W4310076807 cites W3017451406 @default.
- W4310076807 cites W3017644243 @default.
- W4310076807 cites W3017855299 @default.
- W4310076807 cites W3020168167 @default.
- W4310076807 cites W3020653337 @default.
- W4310076807 cites W3025948831 @default.
- W4310076807 cites W3080406710 @default.
- W4310076807 cites W3083753334 @default.
- W4310076807 cites W3086039674 @default.
- W4310076807 cites W3105081694 @default.
- W4310076807 cites W3114166611 @default.
- W4310076807 cites W3129191949 @default.
- W4310076807 cites W3139338041 @default.
- W4310076807 cites W3139833881 @default.
- W4310076807 cites W3157302753 @default.
- W4310076807 cites W3162351260 @default.
- W4310076807 cites W3181327235 @default.
- W4310076807 cites W3204073565 @default.
- W4310076807 cites W4286255117 @default.
- W4310076807 doi "https://doi.org/10.1016/j.asoc.2022.109851" @default.
- W4310076807 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36447954" @default.
- W4310076807 hasPublicationYear "2023" @default.
- W4310076807 type Work @default.
- W4310076807 citedByCount "6" @default.
- W4310076807 countsByYear W43100768072023 @default.
- W4310076807 crossrefType "journal-article" @default.
- W4310076807 hasAuthorship W4310076807A5021894709 @default.
- W4310076807 hasAuthorship W4310076807A5023235306 @default.
- W4310076807 hasAuthorship W4310076807A5035041500 @default.
- W4310076807 hasAuthorship W4310076807A5060090579 @default.
- W4310076807 hasBestOaLocation W43100768071 @default.
- W4310076807 hasConcept C108583219 @default.
- W4310076807 hasConcept C116675565 @default.
- W4310076807 hasConcept C119857082 @default.
- W4310076807 hasConcept C126838900 @default.
- W4310076807 hasConcept C142724271 @default.
- W4310076807 hasConcept C150899416 @default.
- W4310076807 hasConcept C153180895 @default.
- W4310076807 hasConcept C154945302 @default.
- W4310076807 hasConcept C162307627 @default.
- W4310076807 hasConcept C2779134260 @default.
- W4310076807 hasConcept C3006700255 @default.
- W4310076807 hasConcept C3007834351 @default.
- W4310076807 hasConcept C3008058167 @default.
- W4310076807 hasConcept C41008148 @default.
- W4310076807 hasConcept C50644808 @default.
- W4310076807 hasConcept C524204448 @default.
- W4310076807 hasConcept C544519230 @default.
- W4310076807 hasConcept C71924100 @default.
- W4310076807 hasConceptScore W4310076807C108583219 @default.
- W4310076807 hasConceptScore W4310076807C116675565 @default.
- W4310076807 hasConceptScore W4310076807C119857082 @default.
- W4310076807 hasConceptScore W4310076807C126838900 @default.
- W4310076807 hasConceptScore W4310076807C142724271 @default.
- W4310076807 hasConceptScore W4310076807C150899416 @default.
- W4310076807 hasConceptScore W4310076807C153180895 @default.
- W4310076807 hasConceptScore W4310076807C154945302 @default.
- W4310076807 hasConceptScore W4310076807C162307627 @default.
- W4310076807 hasConceptScore W4310076807C2779134260 @default.
- W4310076807 hasConceptScore W4310076807C3006700255 @default.
- W4310076807 hasConceptScore W4310076807C3007834351 @default.
- W4310076807 hasConceptScore W4310076807C3008058167 @default.
- W4310076807 hasConceptScore W4310076807C41008148 @default.
- W4310076807 hasConceptScore W4310076807C50644808 @default.
- W4310076807 hasConceptScore W4310076807C524204448 @default.
- W4310076807 hasConceptScore W4310076807C544519230 @default.
- W4310076807 hasConceptScore W4310076807C71924100 @default.
- W4310076807 hasLocation W43100768071 @default.
- W4310076807 hasLocation W43100768072 @default.
- W4310076807 hasLocation W43100768073 @default.
- W4310076807 hasOpenAccess W4310076807 @default.
- W4310076807 hasPrimaryLocation W43100768071 @default.
- W4310076807 hasRelatedWork W2946016983 @default.
- W4310076807 hasRelatedWork W2960456850 @default.
- W4310076807 hasRelatedWork W3009669391 @default.
- W4310076807 hasRelatedWork W3036314732 @default.
- W4310076807 hasRelatedWork W4205317059 @default.