Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310080481> ?p ?o ?g. }
- W4310080481 endingPage "1417" @default.
- W4310080481 startingPage "1406" @default.
- W4310080481 abstract "Abstract Background Dedicated cone‐beam breast computed tomography (CBBCT) using short‐scan acquisition is being actively investigated to potentially reduce the radiation dose to the breast. This would require determining the optimal x‐ray source trajectory for such short‐scan acquisition. Purpose To quantify the projection angle‐dependent normalized glandular dose coefficient () in CBBCT, referred to as angular , so that the x‐ray ray source trajectory that minimizes the radiation dose to the breast for short‐scan acquisition can be determined. Materials and Methods A cohort of 75 CBBCT clinical datasets was segmented and used to generate three breast models – (I) patient‐specific breast with heterogeneous fibroglandular tissue distribution and real breast shape, (II) patient‐specific breast shape with homogeneous tissue distribution and matched fibroglandular weight fraction, and (III) homogeneous semi‐ellipsoidal breast with patient‐specific breast dimensions and matched fibroglandular weight fraction, which corresponds to the breast model used in current radiation dosimetry protocols. For each clinical dataset, the angular was obtained at 10 discrete angles, spaced 36° apart, for full‐scan, circular, x‐ray source trajectory from Monte Carlo simulations. Model III is used for validating the Monte Carlo simulation results. Models II and III are used to determine if breast shape contributes to the observed trends in angular . A geometry‐based theory in conjunction with center‐of‐mass () based distribution analysis is used to explain the projection angle‐dependent variation in angular . Results The theoretical model predicted that the angular will follow a sinusoidal pattern and the amplitude of the sinusoid increases when the center‐of‐mass of fibroglandular tissue () is farther from the center‐of‐mass of the breast (). It also predicted that the angular will be minimized at x‐ray source positions complementary to the . The was superior to the in 80% (60/75) of the breasts. From Monte Carlo simulations and for homogeneous breasts (models II and III), the deviation in breast shape from a semi‐ellipsoid had minimal effect on angular and showed less than 4% variation. From Monte Carlo simulations and for model I, as predicted by our theory, the angular followed a sinusoidal pattern with maxima and minima at x‐ray source positions superior and inferior to the breast, respectively. For model I, the projection angle‐dependent variation in angular was 16.4%. Conclusion The heterogeneous tissue distribution affected the angular more than the breast shape. For model I, the angular was lowest when the x‐ray source was inferior to the breast. Hence, for short‐scan CBBCT acquisition with aligned with axis‐of‐rotation, an x‐ray source trajectory inferior to the breast is preferable and such an acquisition spanning 205° can potentially reduce the mean glandular dose by up to 52%." @default.
- W4310080481 created "2022-11-30" @default.
- W4310080481 creator A5015178970 @default.
- W4310080481 creator A5058544467 @default.
- W4310080481 creator A5073254926 @default.
- W4310080481 date "2022-12-10" @default.
- W4310080481 modified "2023-10-01" @default.
- W4310080481 title "Dedicated cone‐beam breast CT: Data acquisition strategies based on projection angle‐dependent normalized glandular dose coefficients" @default.
- W4310080481 cites W1901193091 @default.
- W4310080481 cites W1943832849 @default.
- W4310080481 cites W1965316460 @default.
- W4310080481 cites W1971469186 @default.
- W4310080481 cites W1982568463 @default.
- W4310080481 cites W1986419674 @default.
- W4310080481 cites W1996953770 @default.
- W4310080481 cites W2011840423 @default.
- W4310080481 cites W2020702746 @default.
- W4310080481 cites W2025144151 @default.
- W4310080481 cites W2034105142 @default.
- W4310080481 cites W2035053220 @default.
- W4310080481 cites W2042347629 @default.
- W4310080481 cites W2047230339 @default.
- W4310080481 cites W2055904889 @default.
- W4310080481 cites W2065808430 @default.
- W4310080481 cites W2079515635 @default.
- W4310080481 cites W2080924368 @default.
- W4310080481 cites W2084061909 @default.
- W4310080481 cites W2116737229 @default.
- W4310080481 cites W2123683167 @default.
- W4310080481 cites W2126466327 @default.
- W4310080481 cites W2130461719 @default.
- W4310080481 cites W2131240301 @default.
- W4310080481 cites W2151880820 @default.
- W4310080481 cites W2162332320 @default.
- W4310080481 cites W2328084817 @default.
- W4310080481 cites W2614009048 @default.
- W4310080481 cites W2727051654 @default.
- W4310080481 cites W2752731244 @default.
- W4310080481 cites W2768996390 @default.
- W4310080481 cites W2806867457 @default.
- W4310080481 cites W2897681966 @default.
- W4310080481 cites W2911155789 @default.
- W4310080481 cites W2997151107 @default.
- W4310080481 cites W3086582737 @default.
- W4310080481 cites W3109797611 @default.
- W4310080481 cites W3125808150 @default.
- W4310080481 cites W4223590799 @default.
- W4310080481 cites W4281641097 @default.
- W4310080481 doi "https://doi.org/10.1002/mp.16129" @default.
- W4310080481 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36427332" @default.
- W4310080481 hasPublicationYear "2022" @default.
- W4310080481 type Work @default.
- W4310080481 citedByCount "0" @default.
- W4310080481 crossrefType "journal-article" @default.
- W4310080481 hasAuthorship W4310080481A5015178970 @default.
- W4310080481 hasAuthorship W4310080481A5058544467 @default.
- W4310080481 hasAuthorship W4310080481A5073254926 @default.
- W4310080481 hasConcept C105795698 @default.
- W4310080481 hasConcept C11413529 @default.
- W4310080481 hasConcept C120665830 @default.
- W4310080481 hasConcept C121332964 @default.
- W4310080481 hasConcept C121608353 @default.
- W4310080481 hasConcept C126322002 @default.
- W4310080481 hasConcept C126838900 @default.
- W4310080481 hasConcept C19499675 @default.
- W4310080481 hasConcept C2777432617 @default.
- W4310080481 hasConcept C2779813781 @default.
- W4310080481 hasConcept C2780472235 @default.
- W4310080481 hasConcept C2989005 @default.
- W4310080481 hasConcept C33923547 @default.
- W4310080481 hasConcept C530470458 @default.
- W4310080481 hasConcept C544519230 @default.
- W4310080481 hasConcept C57493831 @default.
- W4310080481 hasConcept C71924100 @default.
- W4310080481 hasConcept C75088862 @default.
- W4310080481 hasConceptScore W4310080481C105795698 @default.
- W4310080481 hasConceptScore W4310080481C11413529 @default.
- W4310080481 hasConceptScore W4310080481C120665830 @default.
- W4310080481 hasConceptScore W4310080481C121332964 @default.
- W4310080481 hasConceptScore W4310080481C121608353 @default.
- W4310080481 hasConceptScore W4310080481C126322002 @default.
- W4310080481 hasConceptScore W4310080481C126838900 @default.
- W4310080481 hasConceptScore W4310080481C19499675 @default.
- W4310080481 hasConceptScore W4310080481C2777432617 @default.
- W4310080481 hasConceptScore W4310080481C2779813781 @default.
- W4310080481 hasConceptScore W4310080481C2780472235 @default.
- W4310080481 hasConceptScore W4310080481C2989005 @default.
- W4310080481 hasConceptScore W4310080481C33923547 @default.
- W4310080481 hasConceptScore W4310080481C530470458 @default.
- W4310080481 hasConceptScore W4310080481C544519230 @default.
- W4310080481 hasConceptScore W4310080481C57493831 @default.
- W4310080481 hasConceptScore W4310080481C71924100 @default.
- W4310080481 hasConceptScore W4310080481C75088862 @default.
- W4310080481 hasIssue "3" @default.
- W4310080481 hasLocation W43100804811 @default.
- W4310080481 hasLocation W43100804812 @default.
- W4310080481 hasOpenAccess W4310080481 @default.
- W4310080481 hasPrimaryLocation W43100804811 @default.