Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310081657> ?p ?o ?g. }
- W4310081657 abstract "A bstract We study Euclidean D3-branes wrapping divisors D in Calabi-Yau orientifold compactifications of type IIB string theory. Witten’s counting of fermion zero modes in terms of the cohomology of the structure sheaf $$ {mathcal{O}}_D $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>O</mml:mi> <mml:mi>D</mml:mi> </mml:msub> </mml:math> applies when D is smooth, but we argue that effective divisors of Calabi-Yau threefolds typically have singularities along rational curves. We generalize the counting of fermion zero modes to such singular divisors, in terms of the cohomology of the structure sheaf $$ {mathcal{O}}_{overline{D}} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>O</mml:mi> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:msub> </mml:math> of the normalization $$ overline{D} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> of D . We establish this by detailing compactifications in which the singularities can be unwound by passing through flop transitions, giving a physical incarnation of the normalization process. Analytically continuing the superpotential through the flops, we find that singular divisors whose normalizations are rigid can contribute to the superpotential: specifically, $$ {h}_{+}^{bullet}left({mathcal{O}}_{overline{D}}right)=left(1,0,0right) $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msubsup> <mml:mi>h</mml:mi> <mml:mo>+</mml:mo> <mml:mo>•</mml:mo> </mml:msubsup> <mml:mfenced> <mml:msub> <mml:mi>O</mml:mi> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:msub> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mfenced> <mml:mn>1</mml:mn> <mml:mn>0</mml:mn> <mml:mn>0</mml:mn> </mml:mfenced> </mml:math> and $$ {h}_{-}^{bullet}left({mathcal{O}}_{overline{D}}right)=left(0,0,0right) $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msubsup> <mml:mi>h</mml:mi> <mml:mo>−</mml:mo> <mml:mo>•</mml:mo> </mml:msubsup> <mml:mfenced> <mml:msub> <mml:mi>O</mml:mi> <mml:mover> <mml:mi>D</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:msub> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mfenced> <mml:mn>0</mml:mn> <mml:mn>0</mml:mn> <mml:mn>0</mml:mn> </mml:mfenced> </mml:math> give a sufficient condition for a contribution. The examples that we present feature infinitely many isomorphic geometric phases, with corresponding infinite-order monodromy groups Γ. We use the action of Γ on effective divisors to determine the exact effective cones, which have infinitely many generators. The resulting nonperturbative superpotentials are Jacobi theta functions, whose modular symmetries suggest the existence of strong-weak coupling dualities involving inversion of divisor volumes." @default.
- W4310081657 created "2022-11-30" @default.
- W4310081657 creator A5004390635 @default.
- W4310081657 creator A5015845523 @default.
- W4310081657 creator A5037450560 @default.
- W4310081657 creator A5081241838 @default.
- W4310081657 creator A5083227574 @default.
- W4310081657 date "2022-11-24" @default.
- W4310081657 modified "2023-10-01" @default.
- W4310081657 title "Superpotentials from singular divisors" @default.
- W4310081657 cites W1839514714 @default.
- W4310081657 cites W1981948325 @default.
- W4310081657 cites W1990106215 @default.
- W4310081657 cites W1993070038 @default.
- W4310081657 cites W2050361858 @default.
- W4310081657 cites W2053126470 @default.
- W4310081657 cites W2055639220 @default.
- W4310081657 cites W2058365686 @default.
- W4310081657 cites W2059925834 @default.
- W4310081657 cites W2060243544 @default.
- W4310081657 cites W2061671236 @default.
- W4310081657 cites W2063733105 @default.
- W4310081657 cites W2066402283 @default.
- W4310081657 cites W2078935957 @default.
- W4310081657 cites W2085429267 @default.
- W4310081657 cites W2092610275 @default.
- W4310081657 cites W2094017794 @default.
- W4310081657 cites W2096204312 @default.
- W4310081657 cites W2106531025 @default.
- W4310081657 cites W2131781567 @default.
- W4310081657 cites W2173328249 @default.
- W4310081657 cites W2205955037 @default.
- W4310081657 cites W2332901554 @default.
- W4310081657 cites W2883606939 @default.
- W4310081657 cites W2963800692 @default.
- W4310081657 cites W3037723067 @default.
- W4310081657 cites W3090035142 @default.
- W4310081657 cites W3098158712 @default.
- W4310081657 cites W3098529953 @default.
- W4310081657 cites W3099355691 @default.
- W4310081657 cites W3100324632 @default.
- W4310081657 cites W3100793997 @default.
- W4310081657 cites W3101871479 @default.
- W4310081657 cites W3103809089 @default.
- W4310081657 cites W3104900713 @default.
- W4310081657 cites W3104994134 @default.
- W4310081657 cites W3105929362 @default.
- W4310081657 cites W3106427181 @default.
- W4310081657 cites W3106433506 @default.
- W4310081657 cites W3106538941 @default.
- W4310081657 cites W3148646108 @default.
- W4310081657 cites W3203892559 @default.
- W4310081657 cites W4206453142 @default.
- W4310081657 cites W4214727752 @default.
- W4310081657 cites W4241828906 @default.
- W4310081657 cites W4253231593 @default.
- W4310081657 cites W4285783038 @default.
- W4310081657 cites W1739955632 @default.
- W4310081657 doi "https://doi.org/10.1007/jhep11(2022)142" @default.
- W4310081657 hasPublicationYear "2022" @default.
- W4310081657 type Work @default.
- W4310081657 citedByCount "1" @default.
- W4310081657 countsByYear W43100816572023 @default.
- W4310081657 crossrefType "journal-article" @default.
- W4310081657 hasAuthorship W4310081657A5004390635 @default.
- W4310081657 hasAuthorship W4310081657A5015845523 @default.
- W4310081657 hasAuthorship W4310081657A5037450560 @default.
- W4310081657 hasAuthorship W4310081657A5081241838 @default.
- W4310081657 hasAuthorship W4310081657A5083227574 @default.
- W4310081657 hasBestOaLocation W43100816571 @default.
- W4310081657 hasConcept C11413529 @default.
- W4310081657 hasConcept C116674579 @default.
- W4310081657 hasConcept C121332964 @default.
- W4310081657 hasConcept C158260368 @default.
- W4310081657 hasConcept C168948012 @default.
- W4310081657 hasConcept C202444582 @default.
- W4310081657 hasConcept C33923547 @default.
- W4310081657 hasConcept C37914503 @default.
- W4310081657 hasConcept C4017995 @default.
- W4310081657 hasConcept C62520636 @default.
- W4310081657 hasConcept C78606066 @default.
- W4310081657 hasConceptScore W4310081657C11413529 @default.
- W4310081657 hasConceptScore W4310081657C116674579 @default.
- W4310081657 hasConceptScore W4310081657C121332964 @default.
- W4310081657 hasConceptScore W4310081657C158260368 @default.
- W4310081657 hasConceptScore W4310081657C168948012 @default.
- W4310081657 hasConceptScore W4310081657C202444582 @default.
- W4310081657 hasConceptScore W4310081657C33923547 @default.
- W4310081657 hasConceptScore W4310081657C37914503 @default.
- W4310081657 hasConceptScore W4310081657C4017995 @default.
- W4310081657 hasConceptScore W4310081657C62520636 @default.
- W4310081657 hasConceptScore W4310081657C78606066 @default.
- W4310081657 hasIssue "11" @default.
- W4310081657 hasLocation W43100816571 @default.
- W4310081657 hasLocation W43100816572 @default.
- W4310081657 hasLocation W43100816573 @default.
- W4310081657 hasLocation W43100816574 @default.
- W4310081657 hasLocation W43100816575 @default.
- W4310081657 hasOpenAccess W4310081657 @default.
- W4310081657 hasPrimaryLocation W43100816571 @default.