Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310123715> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4310123715 endingPage "65" @default.
- W4310123715 startingPage "55" @default.
- W4310123715 abstract "Exponential growth in the use of cloud computing services makes it difficult to forecast loads of virtual machines (VMs). Accurate virtual machine (VM) workload forecasting is the most critical task in appropriately managing cloud resources such as memory and central processing units while minimizing energy usage. To address this problem, an integrated deep learning model is proposed in this research paper. The model employs two popular neural networks: a bidirectional Long Short-Term Memory Network (BiLSTM) with a convolutional neural networks (CNN). The CNN component pulls high-level attributes from all VM workload data, whereas the BiLSTM component forecasts future VM workload. The experimental results reveal that the suggested model outperforms commonly used workload prediction methods in terms of forecasting accuracy of VMs workloads in cloud computing environments." @default.
- W4310123715 created "2022-11-30" @default.
- W4310123715 creator A5043018934 @default.
- W4310123715 creator A5065634074 @default.
- W4310123715 creator A5076831677 @default.
- W4310123715 creator A5081752861 @default.
- W4310123715 creator A5087850747 @default.
- W4310123715 date "2022-11-29" @default.
- W4310123715 modified "2023-09-25" @default.
- W4310123715 title "Workload Prediction of Virtual Machines Using Integrated Deep Learning Approaches Over Cloud Data Centers" @default.
- W4310123715 cites W1981202677 @default.
- W4310123715 cites W2064675550 @default.
- W4310123715 cites W2596158739 @default.
- W4310123715 cites W2791512297 @default.
- W4310123715 cites W2889717020 @default.
- W4310123715 cites W2972927421 @default.
- W4310123715 cites W3012055358 @default.
- W4310123715 cites W3096143487 @default.
- W4310123715 cites W3135664775 @default.
- W4310123715 cites W3138270325 @default.
- W4310123715 cites W3174935435 @default.
- W4310123715 cites W3200688867 @default.
- W4310123715 cites W3208519924 @default.
- W4310123715 cites W4206561926 @default.
- W4310123715 cites W4221005058 @default.
- W4310123715 doi "https://doi.org/10.1007/978-981-19-5403-0_5" @default.
- W4310123715 hasPublicationYear "2022" @default.
- W4310123715 type Work @default.
- W4310123715 citedByCount "0" @default.
- W4310123715 crossrefType "book-chapter" @default.
- W4310123715 hasAuthorship W4310123715A5043018934 @default.
- W4310123715 hasAuthorship W4310123715A5065634074 @default.
- W4310123715 hasAuthorship W4310123715A5076831677 @default.
- W4310123715 hasAuthorship W4310123715A5081752861 @default.
- W4310123715 hasAuthorship W4310123715A5087850747 @default.
- W4310123715 hasConcept C108583219 @default.
- W4310123715 hasConcept C111919701 @default.
- W4310123715 hasConcept C119857082 @default.
- W4310123715 hasConcept C120314980 @default.
- W4310123715 hasConcept C121332964 @default.
- W4310123715 hasConcept C124101348 @default.
- W4310123715 hasConcept C127413603 @default.
- W4310123715 hasConcept C154945302 @default.
- W4310123715 hasConcept C168167062 @default.
- W4310123715 hasConcept C201995342 @default.
- W4310123715 hasConcept C25344961 @default.
- W4310123715 hasConcept C2778476105 @default.
- W4310123715 hasConcept C2780451532 @default.
- W4310123715 hasConcept C41008148 @default.
- W4310123715 hasConcept C50644808 @default.
- W4310123715 hasConcept C75684735 @default.
- W4310123715 hasConcept C79403827 @default.
- W4310123715 hasConcept C79974875 @default.
- W4310123715 hasConcept C81363708 @default.
- W4310123715 hasConcept C97355855 @default.
- W4310123715 hasConceptScore W4310123715C108583219 @default.
- W4310123715 hasConceptScore W4310123715C111919701 @default.
- W4310123715 hasConceptScore W4310123715C119857082 @default.
- W4310123715 hasConceptScore W4310123715C120314980 @default.
- W4310123715 hasConceptScore W4310123715C121332964 @default.
- W4310123715 hasConceptScore W4310123715C124101348 @default.
- W4310123715 hasConceptScore W4310123715C127413603 @default.
- W4310123715 hasConceptScore W4310123715C154945302 @default.
- W4310123715 hasConceptScore W4310123715C168167062 @default.
- W4310123715 hasConceptScore W4310123715C201995342 @default.
- W4310123715 hasConceptScore W4310123715C25344961 @default.
- W4310123715 hasConceptScore W4310123715C2778476105 @default.
- W4310123715 hasConceptScore W4310123715C2780451532 @default.
- W4310123715 hasConceptScore W4310123715C41008148 @default.
- W4310123715 hasConceptScore W4310123715C50644808 @default.
- W4310123715 hasConceptScore W4310123715C75684735 @default.
- W4310123715 hasConceptScore W4310123715C79403827 @default.
- W4310123715 hasConceptScore W4310123715C79974875 @default.
- W4310123715 hasConceptScore W4310123715C81363708 @default.
- W4310123715 hasConceptScore W4310123715C97355855 @default.
- W4310123715 hasLocation W43101237151 @default.
- W4310123715 hasOpenAccess W4310123715 @default.
- W4310123715 hasPrimaryLocation W43101237151 @default.
- W4310123715 hasRelatedWork W2018701190 @default.
- W4310123715 hasRelatedWork W2337926734 @default.
- W4310123715 hasRelatedWork W2364994903 @default.
- W4310123715 hasRelatedWork W3014300295 @default.
- W4310123715 hasRelatedWork W3026163998 @default.
- W4310123715 hasRelatedWork W4311257506 @default.
- W4310123715 hasRelatedWork W4312417841 @default.
- W4310123715 hasRelatedWork W4320802194 @default.
- W4310123715 hasRelatedWork W4321369474 @default.
- W4310123715 hasRelatedWork W4366224123 @default.
- W4310123715 isParatext "false" @default.
- W4310123715 isRetracted "false" @default.
- W4310123715 workType "book-chapter" @default.