Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310141817> ?p ?o ?g. }
- W4310141817 abstract "PurposeIntraoperative evaluation of bowel perfusion is currently dependent upon subjective assessment. Thus, quantitative and objective methods of bowel viability in intestinal anastomosis are scarce. To address this clinical need, a conditional adversarial network is used to analyze the data from laser speckle contrast imaging (LSCI) paired with a visible-light camera to identify abnormal tissue perfusion regions.ApproachOur vision platform was based on a dual-modality bench-top imaging system with red-green-blue (RGB) and dye-free LSCI channels. Swine model studies were conducted to collect data on bowel mesenteric vascular structures with normal/abnormal microvascular perfusion to construct the control or experimental group. Subsequently, a deep-learning model based on a conditional generative adversarial network (cGAN) was utilized to perform dual-modality image alignment and learn the distribution of normal datasets for training. Thereafter, abnormal datasets were fed into the predictive model for testing. Ischemic bowel regions could be detected by monitoring the erroneous reconstruction from the latent space. The main advantage is that it is unsupervised and does not require subjective manual annotations. Compared with the conventional qualitative LSCI technique, it provides well-defined segmentation results for different levels of ischemia.ResultsWe demonstrated that our model could accurately segment the ischemic intestine images, with a Dice coefficient and accuracy of 90.77% and 93.06%, respectively, in 2560 RGB/LSCI image pairs. The ground truth was labeled by multiple and independent estimations, combining the surgeons’ annotations with fastest gradient descent in suspicious areas of vascular images. The total processing time was 0.05 s for an image size of 256 × 256.ConclusionsThe proposed cGAN can provide pixel-wise and dye-free quantitative analysis of intestinal perfusion, which is an ideal supplement to the traditional LSCI technique. It has potential to help surgeons increase the accuracy of intraoperative diagnosis and improve clinical outcomes of mesenteric ischemia and other gastrointestinal surgeries." @default.
- W4310141817 created "2022-11-30" @default.
- W4310141817 creator A5016247850 @default.
- W4310141817 creator A5020809914 @default.
- W4310141817 creator A5029756353 @default.
- W4310141817 creator A5043954109 @default.
- W4310141817 creator A5059896124 @default.
- W4310141817 creator A5061927755 @default.
- W4310141817 creator A5065616079 @default.
- W4310141817 creator A5068177332 @default.
- W4310141817 creator A5072251460 @default.
- W4310141817 creator A5073177891 @default.
- W4310141817 date "2022-11-28" @default.
- W4310141817 modified "2023-09-25" @default.
- W4310141817 title "Unsupervised and quantitative intestinal ischemia detection using conditional adversarial network in multimodal optical imaging" @default.
- W4310141817 cites W1909551506 @default.
- W4310141817 cites W1989291415 @default.
- W4310141817 cites W1993318984 @default.
- W4310141817 cites W2013368133 @default.
- W4310141817 cites W2032244255 @default.
- W4310141817 cites W2091239176 @default.
- W4310141817 cites W2104521428 @default.
- W4310141817 cites W2108709447 @default.
- W4310141817 cites W2111485830 @default.
- W4310141817 cites W2114502710 @default.
- W4310141817 cites W2125929622 @default.
- W4310141817 cites W2128409098 @default.
- W4310141817 cites W2147182902 @default.
- W4310141817 cites W2154783457 @default.
- W4310141817 cites W2410009860 @default.
- W4310141817 cites W2599354622 @default.
- W4310141817 cites W2742337206 @default.
- W4310141817 cites W2800298478 @default.
- W4310141817 cites W2806695658 @default.
- W4310141817 cites W2890858414 @default.
- W4310141817 cites W2899743969 @default.
- W4310141817 cites W2905215565 @default.
- W4310141817 cites W2909178970 @default.
- W4310141817 cites W2923063853 @default.
- W4310141817 cites W2963073614 @default.
- W4310141817 cites W2965918733 @default.
- W4310141817 cites W2979688502 @default.
- W4310141817 cites W2980985189 @default.
- W4310141817 cites W3014166398 @default.
- W4310141817 cites W3035166033 @default.
- W4310141817 cites W3099561884 @default.
- W4310141817 cites W3118868805 @default.
- W4310141817 cites W3197378020 @default.
- W4310141817 cites W3199528608 @default.
- W4310141817 cites W3209800772 @default.
- W4310141817 cites W4220927347 @default.
- W4310141817 cites W4285533966 @default.
- W4310141817 cites W64341220 @default.
- W4310141817 doi "https://doi.org/10.1117/1.jmi.9.6.064502" @default.
- W4310141817 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36466077" @default.
- W4310141817 hasPublicationYear "2022" @default.
- W4310141817 type Work @default.
- W4310141817 citedByCount "2" @default.
- W4310141817 countsByYear W43101418172023 @default.
- W4310141817 crossrefType "journal-article" @default.
- W4310141817 hasAuthorship W4310141817A5016247850 @default.
- W4310141817 hasAuthorship W4310141817A5020809914 @default.
- W4310141817 hasAuthorship W4310141817A5029756353 @default.
- W4310141817 hasAuthorship W4310141817A5043954109 @default.
- W4310141817 hasAuthorship W4310141817A5059896124 @default.
- W4310141817 hasAuthorship W4310141817A5061927755 @default.
- W4310141817 hasAuthorship W4310141817A5065616079 @default.
- W4310141817 hasAuthorship W4310141817A5068177332 @default.
- W4310141817 hasAuthorship W4310141817A5072251460 @default.
- W4310141817 hasAuthorship W4310141817A5073177891 @default.
- W4310141817 hasBestOaLocation W43101418171 @default.
- W4310141817 hasConcept C102290492 @default.
- W4310141817 hasConcept C146849305 @default.
- W4310141817 hasConcept C153180895 @default.
- W4310141817 hasConcept C154945302 @default.
- W4310141817 hasConcept C2780226545 @default.
- W4310141817 hasConcept C31972630 @default.
- W4310141817 hasConcept C41008148 @default.
- W4310141817 hasConcept C71924100 @default.
- W4310141817 hasConcept C82990744 @default.
- W4310141817 hasConcept C89600930 @default.
- W4310141817 hasConceptScore W4310141817C102290492 @default.
- W4310141817 hasConceptScore W4310141817C146849305 @default.
- W4310141817 hasConceptScore W4310141817C153180895 @default.
- W4310141817 hasConceptScore W4310141817C154945302 @default.
- W4310141817 hasConceptScore W4310141817C2780226545 @default.
- W4310141817 hasConceptScore W4310141817C31972630 @default.
- W4310141817 hasConceptScore W4310141817C41008148 @default.
- W4310141817 hasConceptScore W4310141817C71924100 @default.
- W4310141817 hasConceptScore W4310141817C82990744 @default.
- W4310141817 hasConceptScore W4310141817C89600930 @default.
- W4310141817 hasIssue "06" @default.
- W4310141817 hasLocation W43101418171 @default.
- W4310141817 hasLocation W43101418172 @default.
- W4310141817 hasOpenAccess W4310141817 @default.
- W4310141817 hasPrimaryLocation W43101418171 @default.
- W4310141817 hasRelatedWork W1669643531 @default.
- W4310141817 hasRelatedWork W2005437358 @default.
- W4310141817 hasRelatedWork W2030712947 @default.
- W4310141817 hasRelatedWork W2052518016 @default.