Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310147657> ?p ?o ?g. }
- W4310147657 endingPage "15" @default.
- W4310147657 startingPage "1" @default.
- W4310147657 abstract "The huge number of network traffic data, the abundance of available network features, and the diversity of cyber-attack patterns mean that intrusion detection remains difficult even though many earlier efforts have succeeded in building the Internet of Healthcare Things (IoHT). The implementation of an effective algorithm to filter out most of the probable outliers of Round Trip Time (RTT) of packets recorded in the Internet environment is urgently required. Congestion and interference in networks can arise when numerous biosensors in an IoHT system all attempt to communicate at once. Internet of Health Things networks are susceptible to both intra- and internetwork interference. In this research, the Server-Side Includes (SSI) attack is a key issue because it allows for network compromise as part of Internal Attacks. Despite recent advancements, SSI detection remains difficult due to the vast amounts of network traffic data, the abundance of network features, and the diversity of cyber-attack patterns (DDoS, DoS, Satan, spoofing, etc.). With the help of sensors, physiological data may be collected and sent to distant servers, where they can be analyzed in real time by doctors to help them catch diseases in their earliest stages. This is made possible by the Internet of medical things (IoMT). Wireless data transfer, however, leaves it vulnerable to hackers, especially if the data being transferred are particularly private or sensitive. Security measures designed for devices with more storage space and processing power will not work on those with less. However, machine learning for intrusion detection can give a tailored security response to the needs of IoMT systems. For SSI detection, current methods are either inefficient because of the large number of packets that need to be caught and analyzed or unsuccessful because of outlier values in the RTTs obtained from the captured TCP packets. To the same end, downstream detection refers to the process of calculating the total length of all connections made after a certain point. As a means of improving the SSI detection algorithm's throughput in a network environment, packet RTT outliers will be eliminated. Flow records are used as inputs by flow-based NIDS to determine whether or not a given flow is malicious. In order to detect middlebox-based attacks from two Medical Health IoT datasets, this paper proposes a unique architecture of explainable neural networks (XNN). The model's accuracy in classifying attacks in dataset 1 of the IoHT is 99.7%t, besides achieving 99.4% accuracy in categorising attacks on IoHT dataset 2." @default.
- W4310147657 created "2022-11-30" @default.
- W4310147657 creator A5050177854 @default.
- W4310147657 date "2022-11-28" @default.
- W4310147657 modified "2023-10-01" @default.
- W4310147657 title "Detection of Middlebox-Based Attacks in Healthcare Internet of Things Using Multiple Machine Learning Models" @default.
- W4310147657 cites W2320627976 @default.
- W4310147657 cites W2403816530 @default.
- W4310147657 cites W2471774639 @default.
- W4310147657 cites W2732821385 @default.
- W4310147657 cites W2755027283 @default.
- W4310147657 cites W2800094831 @default.
- W4310147657 cites W2808659260 @default.
- W4310147657 cites W2890454527 @default.
- W4310147657 cites W2903624023 @default.
- W4310147657 cites W2909517348 @default.
- W4310147657 cites W2959544077 @default.
- W4310147657 cites W2968135011 @default.
- W4310147657 cites W2972782286 @default.
- W4310147657 cites W2977577189 @default.
- W4310147657 cites W2979417577 @default.
- W4310147657 cites W2998153253 @default.
- W4310147657 cites W3015392399 @default.
- W4310147657 cites W3016082417 @default.
- W4310147657 cites W3021579482 @default.
- W4310147657 cites W3035056529 @default.
- W4310147657 cites W3044000225 @default.
- W4310147657 cites W3087990969 @default.
- W4310147657 cites W3104056882 @default.
- W4310147657 cites W3113938378 @default.
- W4310147657 cites W3127413902 @default.
- W4310147657 cites W3127640709 @default.
- W4310147657 cites W3132679163 @default.
- W4310147657 cites W3132832413 @default.
- W4310147657 cites W3136062869 @default.
- W4310147657 cites W3152518443 @default.
- W4310147657 cites W3157901373 @default.
- W4310147657 cites W3159267974 @default.
- W4310147657 cites W3165327452 @default.
- W4310147657 cites W3171733056 @default.
- W4310147657 cites W3186579237 @default.
- W4310147657 cites W3186672761 @default.
- W4310147657 cites W3190936350 @default.
- W4310147657 cites W3201326367 @default.
- W4310147657 cites W3202078809 @default.
- W4310147657 cites W3211467008 @default.
- W4310147657 cites W3213173707 @default.
- W4310147657 cites W3215157738 @default.
- W4310147657 cites W4205171076 @default.
- W4310147657 cites W4211001673 @default.
- W4310147657 cites W4213227084 @default.
- W4310147657 cites W4214951907 @default.
- W4310147657 cites W4225394181 @default.
- W4310147657 cites W4229332384 @default.
- W4310147657 doi "https://doi.org/10.1155/2022/2037954" @default.
- W4310147657 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36479020" @default.
- W4310147657 hasPublicationYear "2022" @default.
- W4310147657 type Work @default.
- W4310147657 citedByCount "0" @default.
- W4310147657 crossrefType "journal-article" @default.
- W4310147657 hasAuthorship W4310147657A5050177854 @default.
- W4310147657 hasBestOaLocation W43101476571 @default.
- W4310147657 hasConcept C106131492 @default.
- W4310147657 hasConcept C110875604 @default.
- W4310147657 hasConcept C111814575 @default.
- W4310147657 hasConcept C136764020 @default.
- W4310147657 hasConcept C147873670 @default.
- W4310147657 hasConcept C158379750 @default.
- W4310147657 hasConcept C167900197 @default.
- W4310147657 hasConcept C182590292 @default.
- W4310147657 hasConcept C31258907 @default.
- W4310147657 hasConcept C31972630 @default.
- W4310147657 hasConcept C35341882 @default.
- W4310147657 hasConcept C35525427 @default.
- W4310147657 hasConcept C38652104 @default.
- W4310147657 hasConcept C41008148 @default.
- W4310147657 hasConcept C93996380 @default.
- W4310147657 hasConceptScore W4310147657C106131492 @default.
- W4310147657 hasConceptScore W4310147657C110875604 @default.
- W4310147657 hasConceptScore W4310147657C111814575 @default.
- W4310147657 hasConceptScore W4310147657C136764020 @default.
- W4310147657 hasConceptScore W4310147657C147873670 @default.
- W4310147657 hasConceptScore W4310147657C158379750 @default.
- W4310147657 hasConceptScore W4310147657C167900197 @default.
- W4310147657 hasConceptScore W4310147657C182590292 @default.
- W4310147657 hasConceptScore W4310147657C31258907 @default.
- W4310147657 hasConceptScore W4310147657C31972630 @default.
- W4310147657 hasConceptScore W4310147657C35341882 @default.
- W4310147657 hasConceptScore W4310147657C35525427 @default.
- W4310147657 hasConceptScore W4310147657C38652104 @default.
- W4310147657 hasConceptScore W4310147657C41008148 @default.
- W4310147657 hasConceptScore W4310147657C93996380 @default.
- W4310147657 hasLocation W43101476571 @default.
- W4310147657 hasLocation W43101476572 @default.
- W4310147657 hasLocation W43101476573 @default.
- W4310147657 hasOpenAccess W4310147657 @default.
- W4310147657 hasPrimaryLocation W43101476571 @default.
- W4310147657 hasRelatedWork W1576835530 @default.