Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310169462> ?p ?o ?g. }
- W4310169462 endingPage "106950" @default.
- W4310169462 startingPage "106950" @default.
- W4310169462 abstract "When planning infrastructures such as tunnels in karstified formations, a risk assessment of groundwater inflow must be conducted. The aim of this paper is to present a workflow for the probabilistic estimation of the water inflow from karst conduits using a Monte-Carlo approach. The procedure involves three main steps. First, realistic stochastic karstic conduit network geometries are generated based on fracture and stratigraphic information using the Stochastic Karstic Simulation approach (SKS). To represent the geological uncertainty, different scenarios are considered. Then, a discrete–continuum numerical modeling approach is employed, allowing the flow calculation to account for the exchange between the matrix and the conduits as well as the transition between turbulent and laminar flow in the conduits. Because it is not known if and where (at which depths) the tunnel may hit a karst conduit, and what will be the pressure gradient in the system, different hydrogeological scenarios are considered in the uncertainty analysis phase including a randomized location of the tunnel, a range of possible pressure gradients, and a range of possible matrix permeability values. The final step consists of the statistical analysis of the results. The proposed workflow allows estimating the range of plausible inflows and studying how the inflows are related to the network geometry properties and to the hydrodynamic parameters of the aquifer. This method is illustrated in a simple synthetic but realistic case of a rather deep and confined karstic formation. In that situation, the results show that even if the pressure difference in the system and the matrix permeability value are important factors controlling the long-term inflow, the karstic conduit network geometry and connectivity also play a critical role in the determination of the potential discharge. Overall, this study demonstrates the possibility and advantages of using stochastic analysis in the early phases of project planning to predict possible long-term water inflow in tunnel after its construction." @default.
- W4310169462 created "2022-11-30" @default.
- W4310169462 creator A5008884264 @default.
- W4310169462 creator A5016313631 @default.
- W4310169462 creator A5025085113 @default.
- W4310169462 creator A5062632706 @default.
- W4310169462 creator A5075073323 @default.
- W4310169462 date "2023-01-01" @default.
- W4310169462 modified "2023-10-16" @default.
- W4310169462 title "Probabilistic estimation of tunnel inflow from a karstic conduit network" @default.
- W4310169462 cites W119541301 @default.
- W4310169462 cites W1589767307 @default.
- W4310169462 cites W1967586126 @default.
- W4310169462 cites W1971861127 @default.
- W4310169462 cites W1971910334 @default.
- W4310169462 cites W1974666396 @default.
- W4310169462 cites W1977060684 @default.
- W4310169462 cites W1980014678 @default.
- W4310169462 cites W1998942940 @default.
- W4310169462 cites W1999244633 @default.
- W4310169462 cites W2002773747 @default.
- W4310169462 cites W2020732968 @default.
- W4310169462 cites W2030305410 @default.
- W4310169462 cites W2037691383 @default.
- W4310169462 cites W2042855859 @default.
- W4310169462 cites W2043140308 @default.
- W4310169462 cites W2053906469 @default.
- W4310169462 cites W2054046647 @default.
- W4310169462 cites W2066013547 @default.
- W4310169462 cites W2074724711 @default.
- W4310169462 cites W2074822787 @default.
- W4310169462 cites W2086892912 @default.
- W4310169462 cites W2092609559 @default.
- W4310169462 cites W2110617126 @default.
- W4310169462 cites W2111202379 @default.
- W4310169462 cites W2130668485 @default.
- W4310169462 cites W2181059865 @default.
- W4310169462 cites W2181533175 @default.
- W4310169462 cites W2181944069 @default.
- W4310169462 cites W2287830199 @default.
- W4310169462 cites W2301335604 @default.
- W4310169462 cites W2399929171 @default.
- W4310169462 cites W2732339943 @default.
- W4310169462 cites W2748981094 @default.
- W4310169462 cites W2765082155 @default.
- W4310169462 cites W2772764825 @default.
- W4310169462 cites W2773259325 @default.
- W4310169462 cites W2790170443 @default.
- W4310169462 cites W2911782182 @default.
- W4310169462 cites W2914772204 @default.
- W4310169462 cites W2916548376 @default.
- W4310169462 cites W2922520141 @default.
- W4310169462 cites W2982269064 @default.
- W4310169462 cites W2996540738 @default.
- W4310169462 cites W3013761724 @default.
- W4310169462 cites W3016787249 @default.
- W4310169462 cites W3035564073 @default.
- W4310169462 cites W3091214877 @default.
- W4310169462 cites W3093346785 @default.
- W4310169462 cites W3096792135 @default.
- W4310169462 cites W3123398127 @default.
- W4310169462 cites W4280563282 @default.
- W4310169462 cites W4289667280 @default.
- W4310169462 doi "https://doi.org/10.1016/j.enggeo.2022.106950" @default.
- W4310169462 hasPublicationYear "2023" @default.
- W4310169462 type Work @default.
- W4310169462 citedByCount "0" @default.
- W4310169462 crossrefType "journal-article" @default.
- W4310169462 hasAuthorship W4310169462A5008884264 @default.
- W4310169462 hasAuthorship W4310169462A5016313631 @default.
- W4310169462 hasAuthorship W4310169462A5025085113 @default.
- W4310169462 hasAuthorship W4310169462A5062632706 @default.
- W4310169462 hasAuthorship W4310169462A5075073323 @default.
- W4310169462 hasBestOaLocation W43101694621 @default.
- W4310169462 hasConcept C105795698 @default.
- W4310169462 hasConcept C106487976 @default.
- W4310169462 hasConcept C111368507 @default.
- W4310169462 hasConcept C120882062 @default.
- W4310169462 hasConcept C121332964 @default.
- W4310169462 hasConcept C127313418 @default.
- W4310169462 hasConcept C131227075 @default.
- W4310169462 hasConcept C151730666 @default.
- W4310169462 hasConcept C159985019 @default.
- W4310169462 hasConcept C182348080 @default.
- W4310169462 hasConcept C187320778 @default.
- W4310169462 hasConcept C192562407 @default.
- W4310169462 hasConcept C2776132308 @default.
- W4310169462 hasConcept C33556824 @default.
- W4310169462 hasConcept C33923547 @default.
- W4310169462 hasConcept C38349280 @default.
- W4310169462 hasConcept C41008148 @default.
- W4310169462 hasConcept C41625074 @default.
- W4310169462 hasConcept C49937458 @default.
- W4310169462 hasConcept C54355233 @default.
- W4310169462 hasConcept C57879066 @default.
- W4310169462 hasConcept C75622301 @default.
- W4310169462 hasConcept C76155785 @default.
- W4310169462 hasConcept C76177295 @default.