Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310178189> ?p ?o ?g. }
- W4310178189 endingPage "6014" @default.
- W4310178189 startingPage "6014" @default.
- W4310178189 abstract "Cultivated land quality (CLQ) is associated with national food security, benign economic development, social harmony, and stability. The scientific evaluation of CLQ provides the basis for achieving the “trinity” protection of cultivated land quantity, and quality, as well as ecology. However, the current research on CLQ evaluation has some limitations, mainly the poor consideration of evaluation indicators, time-consuming and labor-intensive data acquisition, and low precision of evaluation at the regional scale. Therefore, this study introduced multisource data to evaluate CLQ and proposed a new method for CLQ evaluation (natural grade evaluation, utilization grade evaluation, and economic grade evaluation), combining multisource data and the recurrent neural network (RNN) algorithm. Initially, optimal indicators were determined by correlation analysis and generalized linear regression coefficient methods based on factors related to CLQ acquired from multisource data. Then, CLQ evaluation models were constructed with the RNN algorithm on the basis of the aforementioned optimal indicators. Finally, the models were adopted to map CLQ. The present study was carried out in Guangzhou City, Guangdong Province, China. According to the results: (1) CLQ showed close relationship to pH, effective soil layer thickness (EST), chemical fertilizer application rate (CHFE), organic matter content (OMC), annual accumulated temperature (TEMA), 5–15 cm soil depth soil cation exchange capacity (CEC515), 0–5 cm soil depth soil cation exchange capacity (CEC05), 5–15 cm soil depth soil organic carbon content (SOC515), 0–5 cm soil depth soil organic carbon content (SOC05), field slope (FS), groundwater level (GWL), and terrain slope (TS). (2) All modeling accuracies (R2) were greater than 0.80 for the CLQ evaluation models constructed based on the RNN algorithm. The area and spatial distribution of each grade of CLQ evaluation were consistent with the actual situation. The best and the worst quality cultivated land occupied a small area, and the area without a gap with the actual CLQ was as high as 76%, indicating that the model results were reliable. The study shows the suitability of the method for evaluating CLQ at the regional scale, offering a scientific foundation for the rational utilization and management of cultivated land resources, as well as a reference for evaluating CLQ in the future." @default.
- W4310178189 created "2022-11-30" @default.
- W4310178189 creator A5013284593 @default.
- W4310178189 creator A5022633688 @default.
- W4310178189 creator A5029484872 @default.
- W4310178189 creator A5046739814 @default.
- W4310178189 creator A5060805738 @default.
- W4310178189 creator A5063530068 @default.
- W4310178189 creator A5064150904 @default.
- W4310178189 creator A5064408814 @default.
- W4310178189 date "2022-11-27" @default.
- W4310178189 modified "2023-09-26" @default.
- W4310178189 title "Cultivated Land Quality Evaluated Using the RNN Algorithm Based on Multisource Data" @default.
- W4310178189 cites W1077738104 @default.
- W4310178189 cites W1486527837 @default.
- W4310178189 cites W1982356933 @default.
- W4310178189 cites W2012311178 @default.
- W4310178189 cites W2032109089 @default.
- W4310178189 cites W2034416342 @default.
- W4310178189 cites W2078460419 @default.
- W4310178189 cites W2112776483 @default.
- W4310178189 cites W2134902076 @default.
- W4310178189 cites W2155988679 @default.
- W4310178189 cites W2216458615 @default.
- W4310178189 cites W2481542152 @default.
- W4310178189 cites W2589393817 @default.
- W4310178189 cites W2742471985 @default.
- W4310178189 cites W2795511462 @default.
- W4310178189 cites W2889201272 @default.
- W4310178189 cites W2913323966 @default.
- W4310178189 cites W2914705080 @default.
- W4310178189 cites W2916088583 @default.
- W4310178189 cites W2951932550 @default.
- W4310178189 cites W2951969386 @default.
- W4310178189 cites W2990383350 @default.
- W4310178189 cites W2999261983 @default.
- W4310178189 cites W3013788967 @default.
- W4310178189 cites W3017051726 @default.
- W4310178189 cites W3046887855 @default.
- W4310178189 cites W3102476541 @default.
- W4310178189 cites W3131219346 @default.
- W4310178189 cites W3164688895 @default.
- W4310178189 cites W3213515687 @default.
- W4310178189 cites W4206730138 @default.
- W4310178189 cites W4214814489 @default.
- W4310178189 cites W4223583097 @default.
- W4310178189 cites W4225497341 @default.
- W4310178189 cites W4225512240 @default.
- W4310178189 cites W4226410316 @default.
- W4310178189 cites W4280635548 @default.
- W4310178189 doi "https://doi.org/10.3390/rs14236014" @default.
- W4310178189 hasPublicationYear "2022" @default.
- W4310178189 type Work @default.
- W4310178189 citedByCount "0" @default.
- W4310178189 crossrefType "journal-article" @default.
- W4310178189 hasAuthorship W4310178189A5013284593 @default.
- W4310178189 hasAuthorship W4310178189A5022633688 @default.
- W4310178189 hasAuthorship W4310178189A5029484872 @default.
- W4310178189 hasAuthorship W4310178189A5046739814 @default.
- W4310178189 hasAuthorship W4310178189A5060805738 @default.
- W4310178189 hasAuthorship W4310178189A5063530068 @default.
- W4310178189 hasAuthorship W4310178189A5064150904 @default.
- W4310178189 hasAuthorship W4310178189A5064408814 @default.
- W4310178189 hasBestOaLocation W43101781891 @default.
- W4310178189 hasConcept C105795698 @default.
- W4310178189 hasConcept C11413529 @default.
- W4310178189 hasConcept C159390177 @default.
- W4310178189 hasConcept C159750122 @default.
- W4310178189 hasConcept C18903297 @default.
- W4310178189 hasConcept C2780092901 @default.
- W4310178189 hasConcept C2780560099 @default.
- W4310178189 hasConcept C33923547 @default.
- W4310178189 hasConcept C39432304 @default.
- W4310178189 hasConcept C39464130 @default.
- W4310178189 hasConcept C41008148 @default.
- W4310178189 hasConcept C86803240 @default.
- W4310178189 hasConceptScore W4310178189C105795698 @default.
- W4310178189 hasConceptScore W4310178189C11413529 @default.
- W4310178189 hasConceptScore W4310178189C159390177 @default.
- W4310178189 hasConceptScore W4310178189C159750122 @default.
- W4310178189 hasConceptScore W4310178189C18903297 @default.
- W4310178189 hasConceptScore W4310178189C2780092901 @default.
- W4310178189 hasConceptScore W4310178189C2780560099 @default.
- W4310178189 hasConceptScore W4310178189C33923547 @default.
- W4310178189 hasConceptScore W4310178189C39432304 @default.
- W4310178189 hasConceptScore W4310178189C39464130 @default.
- W4310178189 hasConceptScore W4310178189C41008148 @default.
- W4310178189 hasConceptScore W4310178189C86803240 @default.
- W4310178189 hasFunder F4320321001 @default.
- W4310178189 hasIssue "23" @default.
- W4310178189 hasLocation W43101781891 @default.
- W4310178189 hasLocation W43101781892 @default.
- W4310178189 hasOpenAccess W4310178189 @default.
- W4310178189 hasPrimaryLocation W43101781891 @default.
- W4310178189 hasRelatedWork W1966860611 @default.
- W4310178189 hasRelatedWork W1977210159 @default.
- W4310178189 hasRelatedWork W2099656025 @default.
- W4310178189 hasRelatedWork W2349776111 @default.