Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310184641> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4310184641 abstract "In the past few years, using Machine and Deep Learning techniques has become more and more viable, thanks to the availability of tools which allow people without specific knowledge in the realm of data science and complex networks to build AIs for a variety of research fields. This process has encouraged the adoption of such techniques, e.g. in the context of High Energy Physics. In order to facilitate the translation of Machine Learning (ML) models to fit in the usual workflow for programming FPGAs, a variety of tools have been developed. One example is the HLS4ML toolkit, which allows the translation of Neural Networks (NN) built using tools like TensorFlow to a High-Level Synthesis description (e.g. C++) in order to implement this kind of ML algorithms on FPGAs. This paper presents the activity running at the University of Bologna and INFN-Bologna devoted to preliminary studies for the trigger systems of the Compact Muon Solenoid experiment at the CERN LHC accelerator. An open-source project from Xilinx called PYNQ is being tested combined with the HLS4ML toolkit. The PYNQ purpose is to grant designers the possibility to exploit the benefits of programmable logic and microprocessors using the Python language. The use of cloud computing in this work allows us to test the capabilities of this workflow, from the creation and training of a Neural Network and the creation of a HLS project using HLS4ML, to managing NN inference with custom Python drivers. The main application explored in this work lives in the context of the trigger system of the CMS, where new reconstruction algorithms are being developed due to the advent of the High-Luminosity phase of the LHC." @default.
- W4310184641 created "2022-11-30" @default.
- W4310184641 creator A5000028113 @default.
- W4310184641 creator A5023018471 @default.
- W4310184641 creator A5053933577 @default.
- W4310184641 creator A5076392357 @default.
- W4310184641 creator A5078041658 @default.
- W4310184641 creator A5087757953 @default.
- W4310184641 creator A5091101292 @default.
- W4310184641 date "2022-11-28" @default.
- W4310184641 modified "2023-09-30" @default.
- W4310184641 title "Accelerating Machine Learning inference using FPGAs: the PYNQ framework tested on an AWS EC2 F1 Instance" @default.
- W4310184641 doi "https://doi.org/10.22323/1.414.0243" @default.
- W4310184641 hasPublicationYear "2022" @default.
- W4310184641 type Work @default.
- W4310184641 citedByCount "0" @default.
- W4310184641 crossrefType "proceedings-article" @default.
- W4310184641 hasAuthorship W4310184641A5000028113 @default.
- W4310184641 hasAuthorship W4310184641A5023018471 @default.
- W4310184641 hasAuthorship W4310184641A5053933577 @default.
- W4310184641 hasAuthorship W4310184641A5076392357 @default.
- W4310184641 hasAuthorship W4310184641A5078041658 @default.
- W4310184641 hasAuthorship W4310184641A5087757953 @default.
- W4310184641 hasAuthorship W4310184641A5091101292 @default.
- W4310184641 hasBestOaLocation W43101846411 @default.
- W4310184641 hasConcept C115903868 @default.
- W4310184641 hasConcept C119857082 @default.
- W4310184641 hasConcept C149635348 @default.
- W4310184641 hasConcept C154945302 @default.
- W4310184641 hasConcept C165696696 @default.
- W4310184641 hasConcept C177212765 @default.
- W4310184641 hasConcept C199360897 @default.
- W4310184641 hasConcept C203005215 @default.
- W4310184641 hasConcept C2777062904 @default.
- W4310184641 hasConcept C2777904410 @default.
- W4310184641 hasConcept C38652104 @default.
- W4310184641 hasConcept C41008148 @default.
- W4310184641 hasConcept C42935608 @default.
- W4310184641 hasConcept C519991488 @default.
- W4310184641 hasConcept C77088390 @default.
- W4310184641 hasConceptScore W4310184641C115903868 @default.
- W4310184641 hasConceptScore W4310184641C119857082 @default.
- W4310184641 hasConceptScore W4310184641C149635348 @default.
- W4310184641 hasConceptScore W4310184641C154945302 @default.
- W4310184641 hasConceptScore W4310184641C165696696 @default.
- W4310184641 hasConceptScore W4310184641C177212765 @default.
- W4310184641 hasConceptScore W4310184641C199360897 @default.
- W4310184641 hasConceptScore W4310184641C203005215 @default.
- W4310184641 hasConceptScore W4310184641C2777062904 @default.
- W4310184641 hasConceptScore W4310184641C2777904410 @default.
- W4310184641 hasConceptScore W4310184641C38652104 @default.
- W4310184641 hasConceptScore W4310184641C41008148 @default.
- W4310184641 hasConceptScore W4310184641C42935608 @default.
- W4310184641 hasConceptScore W4310184641C519991488 @default.
- W4310184641 hasConceptScore W4310184641C77088390 @default.
- W4310184641 hasLocation W43101846411 @default.
- W4310184641 hasOpenAccess W4310184641 @default.
- W4310184641 hasPrimaryLocation W43101846411 @default.
- W4310184641 hasRelatedWork W106251480 @default.
- W4310184641 hasRelatedWork W1846534677 @default.
- W4310184641 hasRelatedWork W2610419111 @default.
- W4310184641 hasRelatedWork W2754336679 @default.
- W4310184641 hasRelatedWork W3015409264 @default.
- W4310184641 hasRelatedWork W3043532533 @default.
- W4310184641 hasRelatedWork W4283743966 @default.
- W4310184641 hasRelatedWork W4287815598 @default.
- W4310184641 hasRelatedWork W4313423301 @default.
- W4310184641 hasRelatedWork W586360946 @default.
- W4310184641 isParatext "false" @default.
- W4310184641 isRetracted "false" @default.
- W4310184641 workType "article" @default.