Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310184760> ?p ?o ?g. }
- W4310184760 endingPage "5969" @default.
- W4310184760 startingPage "5969" @default.
- W4310184760 abstract "With the process of increasing urbanization, there is great significance in obtaining urban change information by applying land cover change detection techniques. However, these existing methods still struggle to achieve convincing performances and are insufficient for practical applications. In this paper, we constructed a new data set, named Wenzhou data set, aiming to detect the land cover changes of Wenzhou City and thus update the urban expanding geographic data. Based on this data set, we provide a new self-attention and convolution fusion network (SCFNet) for the land cover change detection of the Wenzhou data set. The SCFNet is composed of three modules, including backbone (local–global pyramid feature extractor in SLGPNet), self-attention and convolution fusion module (SCFM), and residual refinement module (RRM). The SCFM combines the self-attention mechanism with convolutional layers to acquire a better feature representation. Furthermore, RRM exploits dilated convolutions with different dilation rates to refine more accurate and complete predictions over changed areas. In addition, to explore the performance of existing computational intelligence techniques in application scenarios, we selected six classical and advanced deep learning-based methods for systematic testing and comparison. The extensive experiments on the Wenzhou and Guangzhou data sets demonstrated that our SCFNet obviously outperforms other existing methods. On the Wenzhou data set, the precision, recall and F1-score of our SCFNet are all better than 85%." @default.
- W4310184760 created "2022-11-30" @default.
- W4310184760 creator A5016801926 @default.
- W4310184760 creator A5038753313 @default.
- W4310184760 creator A5040649863 @default.
- W4310184760 creator A5045817487 @default.
- W4310184760 creator A5051767201 @default.
- W4310184760 creator A5071466474 @default.
- W4310184760 creator A5079997606 @default.
- W4310184760 creator A5085064078 @default.
- W4310184760 date "2022-11-25" @default.
- W4310184760 modified "2023-09-26" @default.
- W4310184760 title "Self-Attention and Convolution Fusion Network for Land Cover Change Detection over a New Data Set in Wenzhou, China" @default.
- W4310184760 cites W1965852574 @default.
- W4310184760 cites W1997413270 @default.
- W4310184760 cites W2025397867 @default.
- W4310184760 cites W2032234169 @default.
- W4310184760 cites W2049585214 @default.
- W4310184760 cites W2133059825 @default.
- W4310184760 cites W2144552105 @default.
- W4310184760 cites W2153864221 @default.
- W4310184760 cites W2160544350 @default.
- W4310184760 cites W2165577558 @default.
- W4310184760 cites W2310428722 @default.
- W4310184760 cites W2312468355 @default.
- W4310184760 cites W2568858292 @default.
- W4310184760 cites W2726981152 @default.
- W4310184760 cites W2751993439 @default.
- W4310184760 cites W2782522152 @default.
- W4310184760 cites W2805152403 @default.
- W4310184760 cites W2908320224 @default.
- W4310184760 cites W2908624219 @default.
- W4310184760 cites W2909060208 @default.
- W4310184760 cites W2936719891 @default.
- W4310184760 cites W2944787920 @default.
- W4310184760 cites W2992240579 @default.
- W4310184760 cites W2998460251 @default.
- W4310184760 cites W2999949539 @default.
- W4310184760 cites W3008156909 @default.
- W4310184760 cites W3014060899 @default.
- W4310184760 cites W3027201985 @default.
- W4310184760 cites W3027225766 @default.
- W4310184760 cites W3030551918 @default.
- W4310184760 cites W3033600255 @default.
- W4310184760 cites W3035335060 @default.
- W4310184760 cites W3036453075 @default.
- W4310184760 cites W3048064159 @default.
- W4310184760 cites W3066154933 @default.
- W4310184760 cites W3104899156 @default.
- W4310184760 cites W3123453839 @default.
- W4310184760 cites W3131096279 @default.
- W4310184760 cites W3144332889 @default.
- W4310184760 cites W3157519352 @default.
- W4310184760 cites W3182928821 @default.
- W4310184760 cites W3184566187 @default.
- W4310184760 cites W3198394695 @default.
- W4310184760 cites W3204219508 @default.
- W4310184760 cites W3217456364 @default.
- W4310184760 cites W4213124617 @default.
- W4310184760 cites W4224212608 @default.
- W4310184760 cites W4226224676 @default.
- W4310184760 cites W4229002315 @default.
- W4310184760 cites W4280623793 @default.
- W4310184760 cites W4283016104 @default.
- W4310184760 cites W4313004766 @default.
- W4310184760 doi "https://doi.org/10.3390/rs14235969" @default.
- W4310184760 hasPublicationYear "2022" @default.
- W4310184760 type Work @default.
- W4310184760 citedByCount "1" @default.
- W4310184760 countsByYear W43101847602023 @default.
- W4310184760 crossrefType "journal-article" @default.
- W4310184760 hasAuthorship W4310184760A5016801926 @default.
- W4310184760 hasAuthorship W4310184760A5038753313 @default.
- W4310184760 hasAuthorship W4310184760A5040649863 @default.
- W4310184760 hasAuthorship W4310184760A5045817487 @default.
- W4310184760 hasAuthorship W4310184760A5051767201 @default.
- W4310184760 hasAuthorship W4310184760A5071466474 @default.
- W4310184760 hasAuthorship W4310184760A5079997606 @default.
- W4310184760 hasAuthorship W4310184760A5085064078 @default.
- W4310184760 hasBestOaLocation W43101847601 @default.
- W4310184760 hasConcept C11413529 @default.
- W4310184760 hasConcept C124101348 @default.
- W4310184760 hasConcept C142575187 @default.
- W4310184760 hasConcept C153180895 @default.
- W4310184760 hasConcept C154945302 @default.
- W4310184760 hasConcept C155512373 @default.
- W4310184760 hasConcept C177264268 @default.
- W4310184760 hasConcept C199360897 @default.
- W4310184760 hasConcept C203595873 @default.
- W4310184760 hasConcept C205649164 @default.
- W4310184760 hasConcept C2524010 @default.
- W4310184760 hasConcept C33923547 @default.
- W4310184760 hasConcept C41008148 @default.
- W4310184760 hasConcept C45347329 @default.
- W4310184760 hasConcept C50644808 @default.
- W4310184760 hasConcept C58489278 @default.
- W4310184760 hasConcept C62649853 @default.
- W4310184760 hasConceptScore W4310184760C11413529 @default.