Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310191330> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4310191330 abstract "Peeling damage reduces the quality of fresh corn ear and affects the purchasing decisions of consumers. Hyperspectral imaging technique has great potential to be used for detection of peeling-damaged fresh corn. However, conventional non-machine-learning methods are limited by unsatisfactory detection accuracy, and machine-learning methods rely heavily on training samples. To address this problem, the germinating sparse classification (GSC) method is proposed to detect the peeling-damaged fresh corn. The germinating strategy is developed to refine training samples, and to dynamically adjust the number of atoms to improve the performance of dictionary, furthermore, the threshold sparse recovery algorithm is proposed to realize pixel level classification. The results demonstrated that the GSC method had the best classification effect with the overall classification accuracy of the training set was 98.33%, and that of the test set was 95.00%. The GSC method also had the highest average pixel prediction accuracy of 84.51% for the entire HSI regions and 91.94% for the damaged regions. This work represents a new method for mechanical damage detection of fresh corn using hyperspectral image (HSI)." @default.
- W4310191330 created "2022-11-30" @default.
- W4310191330 creator A5000496166 @default.
- W4310191330 creator A5026953584 @default.
- W4310191330 creator A5029465528 @default.
- W4310191330 creator A5086733146 @default.
- W4310191330 creator A5087018671 @default.
- W4310191330 date "2022-11-29" @default.
- W4310191330 modified "2023-10-03" @default.
- W4310191330 title "Hyperspectral detection of fresh corn peeling damage using germinating sparse classification method" @default.
- W4310191330 cites W1975992194 @default.
- W4310191330 cites W1984189134 @default.
- W4310191330 cites W2015173188 @default.
- W4310191330 cites W2052653174 @default.
- W4310191330 cites W2065321782 @default.
- W4310191330 cites W2085529604 @default.
- W4310191330 cites W2090956113 @default.
- W4310191330 cites W2280795818 @default.
- W4310191330 cites W2437431645 @default.
- W4310191330 cites W2510418053 @default.
- W4310191330 cites W2595902385 @default.
- W4310191330 cites W2735738785 @default.
- W4310191330 cites W2743188176 @default.
- W4310191330 cites W2794012220 @default.
- W4310191330 cites W2897190242 @default.
- W4310191330 cites W2899360991 @default.
- W4310191330 cites W2908138780 @default.
- W4310191330 cites W2921339042 @default.
- W4310191330 cites W2953724281 @default.
- W4310191330 cites W2980270541 @default.
- W4310191330 cites W2981437454 @default.
- W4310191330 cites W3006232061 @default.
- W4310191330 cites W3024410539 @default.
- W4310191330 cites W3043676327 @default.
- W4310191330 cites W3094093743 @default.
- W4310191330 cites W3139145455 @default.
- W4310191330 cites W3173567133 @default.
- W4310191330 cites W3199510749 @default.
- W4310191330 cites W4206022068 @default.
- W4310191330 doi "https://doi.org/10.3389/fpls.2022.1039110" @default.
- W4310191330 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36523611" @default.
- W4310191330 hasPublicationYear "2022" @default.
- W4310191330 type Work @default.
- W4310191330 citedByCount "1" @default.
- W4310191330 countsByYear W43101913302023 @default.
- W4310191330 crossrefType "journal-article" @default.
- W4310191330 hasAuthorship W4310191330A5000496166 @default.
- W4310191330 hasAuthorship W4310191330A5026953584 @default.
- W4310191330 hasAuthorship W4310191330A5029465528 @default.
- W4310191330 hasAuthorship W4310191330A5086733146 @default.
- W4310191330 hasAuthorship W4310191330A5087018671 @default.
- W4310191330 hasBestOaLocation W43101913301 @default.
- W4310191330 hasConcept C12267149 @default.
- W4310191330 hasConcept C153180895 @default.
- W4310191330 hasConcept C154945302 @default.
- W4310191330 hasConcept C159078339 @default.
- W4310191330 hasConcept C160633673 @default.
- W4310191330 hasConcept C169903167 @default.
- W4310191330 hasConcept C177264268 @default.
- W4310191330 hasConcept C199360897 @default.
- W4310191330 hasConcept C33923547 @default.
- W4310191330 hasConcept C41008148 @default.
- W4310191330 hasConcept C51632099 @default.
- W4310191330 hasConcept C58489278 @default.
- W4310191330 hasConceptScore W4310191330C12267149 @default.
- W4310191330 hasConceptScore W4310191330C153180895 @default.
- W4310191330 hasConceptScore W4310191330C154945302 @default.
- W4310191330 hasConceptScore W4310191330C159078339 @default.
- W4310191330 hasConceptScore W4310191330C160633673 @default.
- W4310191330 hasConceptScore W4310191330C169903167 @default.
- W4310191330 hasConceptScore W4310191330C177264268 @default.
- W4310191330 hasConceptScore W4310191330C199360897 @default.
- W4310191330 hasConceptScore W4310191330C33923547 @default.
- W4310191330 hasConceptScore W4310191330C41008148 @default.
- W4310191330 hasConceptScore W4310191330C51632099 @default.
- W4310191330 hasConceptScore W4310191330C58489278 @default.
- W4310191330 hasFunder F4320321001 @default.
- W4310191330 hasLocation W43101913301 @default.
- W4310191330 hasLocation W43101913302 @default.
- W4310191330 hasLocation W43101913303 @default.
- W4310191330 hasLocation W43101913304 @default.
- W4310191330 hasOpenAccess W4310191330 @default.
- W4310191330 hasPrimaryLocation W43101913301 @default.
- W4310191330 hasRelatedWork W1990237101 @default.
- W4310191330 hasRelatedWork W2028628118 @default.
- W4310191330 hasRelatedWork W2051197289 @default.
- W4310191330 hasRelatedWork W2123376283 @default.
- W4310191330 hasRelatedWork W2546645752 @default.
- W4310191330 hasRelatedWork W3034655717 @default.
- W4310191330 hasRelatedWork W3173596272 @default.
- W4310191330 hasRelatedWork W4226059458 @default.
- W4310191330 hasRelatedWork W4386337602 @default.
- W4310191330 hasRelatedWork W2345184372 @default.
- W4310191330 hasVolume "13" @default.
- W4310191330 isParatext "false" @default.
- W4310191330 isRetracted "false" @default.
- W4310191330 workType "article" @default.