Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310191489> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4310191489 abstract "The application of ab-initio molecular dynamics (AIMD) for the explicit modeling of reactions at the solid- liquid interfaces can provide new understandings towards the reaction mechanisms. However, prohibitive computational cost severely restricts the time- and length-scale of AIMD. Equiv- ariant graph neural network (GNN) based accurate surrogate potentials can accelerate the speed of performing molecular dynamics after learning on representative structures in a data efficient manner. In this study, we combined uncertainty- aware GNN potentials and enhanced sampling to investigate the reactive process of the oxygen reduction reaction (ORR) at Au(100)-water interface. By using a well-established active learning framework based on CUR matrix decomposition, we can evenly sample equilibrium structures from MD simulations and non-equilibrium reaction intermediates that are rarely vis- ited during the reaction. The trained GNNs have shown excep- tional performance in terms of force prediction accuracy, the ability to reproduce structural properties, and the low uncer- tainties when performing MD and metadynamics simulations. Furthermore, the collective variables employed in this work en- ables an automatic search of reaction pathways and provide a detailed understanding towards the ORR reaction mechanism on Au(100). Our simulations identify an associative reaction mechanism where adsorbed O2 reacts with water to form hy- droxyls through an *OOH transition state. The reaction pro- ceeds without formation of *O with a low reaction barrier of 0.3 eV. The low barrier agrees with the fast reaction kinetics observed experimentally. The methodology employed in this study can pave the way for modeling complex chemical reac- tions at electrochemical interfaces with an explicit solvent at ambient conditions." @default.
- W4310191489 created "2022-11-30" @default.
- W4310191489 creator A5015539284 @default.
- W4310191489 creator A5019499247 @default.
- W4310191489 creator A5023121476 @default.
- W4310191489 creator A5083050334 @default.
- W4310191489 date "2022-11-29" @default.
- W4310191489 modified "2023-09-25" @default.
- W4310191489 title "Neural Network Potentials for Accelerated Metadynamics of Oxygen Reduction Kinetics at Au-Water Interfaces" @default.
- W4310191489 doi "https://doi.org/10.26434/chemrxiv-2022-b1pt5" @default.
- W4310191489 hasPublicationYear "2022" @default.
- W4310191489 type Work @default.
- W4310191489 citedByCount "0" @default.
- W4310191489 crossrefType "posted-content" @default.
- W4310191489 hasAuthorship W4310191489A5015539284 @default.
- W4310191489 hasAuthorship W4310191489A5019499247 @default.
- W4310191489 hasAuthorship W4310191489A5023121476 @default.
- W4310191489 hasAuthorship W4310191489A5083050334 @default.
- W4310191489 hasBestOaLocation W43101914891 @default.
- W4310191489 hasConcept C121332964 @default.
- W4310191489 hasConcept C147597530 @default.
- W4310191489 hasConcept C148898269 @default.
- W4310191489 hasConcept C161790260 @default.
- W4310191489 hasConcept C175113610 @default.
- W4310191489 hasConcept C178790620 @default.
- W4310191489 hasConcept C185592680 @default.
- W4310191489 hasConcept C186060115 @default.
- W4310191489 hasConcept C32909587 @default.
- W4310191489 hasConcept C36663273 @default.
- W4310191489 hasConcept C37798101 @default.
- W4310191489 hasConcept C41008148 @default.
- W4310191489 hasConcept C55493867 @default.
- W4310191489 hasConcept C59593255 @default.
- W4310191489 hasConcept C62520636 @default.
- W4310191489 hasConcept C62752575 @default.
- W4310191489 hasConcept C65024703 @default.
- W4310191489 hasConcept C86803240 @default.
- W4310191489 hasConceptScore W4310191489C121332964 @default.
- W4310191489 hasConceptScore W4310191489C147597530 @default.
- W4310191489 hasConceptScore W4310191489C148898269 @default.
- W4310191489 hasConceptScore W4310191489C161790260 @default.
- W4310191489 hasConceptScore W4310191489C175113610 @default.
- W4310191489 hasConceptScore W4310191489C178790620 @default.
- W4310191489 hasConceptScore W4310191489C185592680 @default.
- W4310191489 hasConceptScore W4310191489C186060115 @default.
- W4310191489 hasConceptScore W4310191489C32909587 @default.
- W4310191489 hasConceptScore W4310191489C36663273 @default.
- W4310191489 hasConceptScore W4310191489C37798101 @default.
- W4310191489 hasConceptScore W4310191489C41008148 @default.
- W4310191489 hasConceptScore W4310191489C55493867 @default.
- W4310191489 hasConceptScore W4310191489C59593255 @default.
- W4310191489 hasConceptScore W4310191489C62520636 @default.
- W4310191489 hasConceptScore W4310191489C62752575 @default.
- W4310191489 hasConceptScore W4310191489C65024703 @default.
- W4310191489 hasConceptScore W4310191489C86803240 @default.
- W4310191489 hasLocation W43101914891 @default.
- W4310191489 hasOpenAccess W4310191489 @default.
- W4310191489 hasPrimaryLocation W43101914891 @default.
- W4310191489 hasRelatedWork W1989280951 @default.
- W4310191489 hasRelatedWork W2007850672 @default.
- W4310191489 hasRelatedWork W2040296114 @default.
- W4310191489 hasRelatedWork W2225729506 @default.
- W4310191489 hasRelatedWork W2389149334 @default.
- W4310191489 hasRelatedWork W2525025814 @default.
- W4310191489 hasRelatedWork W3120343750 @default.
- W4310191489 hasRelatedWork W3166984846 @default.
- W4310191489 hasRelatedWork W328453795 @default.
- W4310191489 hasRelatedWork W4310191489 @default.
- W4310191489 isParatext "false" @default.
- W4310191489 isRetracted "false" @default.
- W4310191489 workType "article" @default.