Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310205502> ?p ?o ?g. }
- W4310205502 endingPage "3848" @default.
- W4310205502 startingPage "3848" @default.
- W4310205502 abstract "Understanding the patterns of streamflow drought frequency and intensity is critical in defining potential environmental and societal impacts on processes associated with surface water resources; however, analysis of these processes is often limited to the availability of data. The objective of this study is to quantify the annual and monthly variability of low flow river conditions over the Southeastern United States (US) using National Water Model (NWM) retrospective simulations (v2.1), which provide streamflow estimates at a high spatial density. The data were used to calculate sums of outflow deficit volumes at annual and monthly scales, from which the autocorrelation functions (ACF), partial autocorrelation functions (PACF) and the Hurst exponent (H) were calculated to quantify low flow patterns. The ACF/PACF approach is used for examining the seasonal and multiannual variation of extreme events, while the Hurst exponent in turn allows for classification of “process memory”, distinguishing multi-seasonal processes from white noise processes. The results showed diverse spatial and temporal patterns of low flow occurrence across the Southeast US study area, with some locations indicating a strong seasonal dependence. These locations are characterized by a longer temporal cycle, whereby low flows were arranged in series of several to dozens of years, after which they did not occur for a period of similar length. In these rivers, H was in the range 0.8 (+/−0.15), which implies a stronger relation with groundwater during dry periods. In other river segments within the study region the probability of low flows appeared random, determined by H oscillating around the values for white noise (0.5 +/−0.15). The initial assessment of spatial clusters of the low flow parameters suggests no strict relationships, although a link to geologic characteristics and aquifer depth was noticed. At monthly scales, low flow occurrence followed precipitation patterns, with streamflow droughts first occurring in the Carolinas and along the Gulf Coast around May and then progressing upstream, reaching maxima around October for central parts of Mississippi, Alabama and Georgia. The relations for both annual and monthly scales are better represented with PACF, for which statistically significant lags were found in around 75% of stream nodes, while ACF explains on average only 20% of cases, indicating that streamflow droughts in the region occur in regular patterns (e.g., seasonal). This repeatability is of greater importance to defining patterns of extreme hydrologic events than the occurrence of high magnitude random events. The results of the research provide useful information about the spatial and temporal patterns of low flow occurrence across the Southeast US, and verify that the NWM retrospective data are able to differentiate the time processes for the occurrence of low flows." @default.
- W4310205502 created "2022-11-30" @default.
- W4310205502 creator A5021430711 @default.
- W4310205502 creator A5029237216 @default.
- W4310205502 date "2022-11-26" @default.
- W4310205502 modified "2023-09-26" @default.
- W4310205502 title "Variability of Annual and Monthly Streamflow Droughts over the Southeastern United States" @default.
- W4310205502 cites W1568869245 @default.
- W4310205502 cites W1580949291 @default.
- W4310205502 cites W1847031783 @default.
- W4310205502 cites W1896688547 @default.
- W4310205502 cites W1986517382 @default.
- W4310205502 cites W2005738319 @default.
- W4310205502 cites W2007603944 @default.
- W4310205502 cites W2018148628 @default.
- W4310205502 cites W2018849590 @default.
- W4310205502 cites W2026620105 @default.
- W4310205502 cites W2037150255 @default.
- W4310205502 cites W2039015993 @default.
- W4310205502 cites W2052605703 @default.
- W4310205502 cites W2059712617 @default.
- W4310205502 cites W2071559765 @default.
- W4310205502 cites W2074985980 @default.
- W4310205502 cites W2095276997 @default.
- W4310205502 cites W2109423878 @default.
- W4310205502 cites W2115787587 @default.
- W4310205502 cites W2130091784 @default.
- W4310205502 cites W2130877939 @default.
- W4310205502 cites W2134358106 @default.
- W4310205502 cites W2140474336 @default.
- W4310205502 cites W2162207253 @default.
- W4310205502 cites W2165301409 @default.
- W4310205502 cites W2168396386 @default.
- W4310205502 cites W2190095134 @default.
- W4310205502 cites W2255015600 @default.
- W4310205502 cites W2336603043 @default.
- W4310205502 cites W2341760625 @default.
- W4310205502 cites W2356856182 @default.
- W4310205502 cites W2409376861 @default.
- W4310205502 cites W2484020843 @default.
- W4310205502 cites W2607058671 @default.
- W4310205502 cites W2734540547 @default.
- W4310205502 cites W2771635983 @default.
- W4310205502 cites W2775501095 @default.
- W4310205502 cites W2800422393 @default.
- W4310205502 cites W2900921042 @default.
- W4310205502 cites W2904552522 @default.
- W4310205502 cites W2913006759 @default.
- W4310205502 cites W2950930504 @default.
- W4310205502 cites W2965295671 @default.
- W4310205502 cites W2970464305 @default.
- W4310205502 cites W2980346800 @default.
- W4310205502 cites W2982526157 @default.
- W4310205502 cites W2988892668 @default.
- W4310205502 cites W2995649216 @default.
- W4310205502 cites W2996830706 @default.
- W4310205502 cites W3013001626 @default.
- W4310205502 cites W3018474253 @default.
- W4310205502 cites W3019913914 @default.
- W4310205502 cites W3089228102 @default.
- W4310205502 cites W3090778630 @default.
- W4310205502 cites W3122914349 @default.
- W4310205502 cites W4280512511 @default.
- W4310205502 cites W4285392550 @default.
- W4310205502 doi "https://doi.org/10.3390/w14233848" @default.
- W4310205502 hasPublicationYear "2022" @default.
- W4310205502 type Work @default.
- W4310205502 citedByCount "2" @default.
- W4310205502 countsByYear W43102055022023 @default.
- W4310205502 crossrefType "journal-article" @default.
- W4310205502 hasAuthorship W4310205502A5021430711 @default.
- W4310205502 hasAuthorship W4310205502A5029237216 @default.
- W4310205502 hasBestOaLocation W43102055021 @default.
- W4310205502 hasConcept C105795698 @default.
- W4310205502 hasConcept C107054158 @default.
- W4310205502 hasConcept C125403950 @default.
- W4310205502 hasConcept C126645576 @default.
- W4310205502 hasConcept C127313418 @default.
- W4310205502 hasConcept C153294291 @default.
- W4310205502 hasConcept C159985019 @default.
- W4310205502 hasConcept C187320778 @default.
- W4310205502 hasConcept C192562407 @default.
- W4310205502 hasConcept C204323151 @default.
- W4310205502 hasConcept C205649164 @default.
- W4310205502 hasConcept C33923547 @default.
- W4310205502 hasConcept C39432304 @default.
- W4310205502 hasConcept C49204034 @default.
- W4310205502 hasConcept C5297727 @default.
- W4310205502 hasConcept C53739315 @default.
- W4310205502 hasConcept C58640448 @default.
- W4310205502 hasConcept C76886044 @default.
- W4310205502 hasConcept C94747663 @default.
- W4310205502 hasConcept C96835011 @default.
- W4310205502 hasConceptScore W4310205502C105795698 @default.
- W4310205502 hasConceptScore W4310205502C107054158 @default.
- W4310205502 hasConceptScore W4310205502C125403950 @default.
- W4310205502 hasConceptScore W4310205502C126645576 @default.
- W4310205502 hasConceptScore W4310205502C127313418 @default.