Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310206895> ?p ?o ?g. }
- W4310206895 endingPage "2529" @default.
- W4310206895 startingPage "2529" @default.
- W4310206895 abstract "In manufacturing processes using computerized numerical control (CNC) machines, machine tools are operated repeatedly for a long period for machining hard and difficult-to-machine materials, such as stainless steel. These operating conditions frequently result in tool breakage. The failure of machine tools significantly degrades the product quality and efficiency of the target process. To solve these problems, various studies have been conducted for detecting faults in machine tools. However, the most related studies used only the univariate signal obtained from CNC machines. The fault-detection methods using univariate signals have a limitation in that multivariate models cannot be applied. This can restrict in performance improvement of the fault detection. To address this problem, we employed empirical mode decomposition to construct a multivariate dataset from the univariate signal. Subsequently, auto-associative kernel regression was used to detect faults in the machine tool. To verify the proposed method, we obtained a univariate current signal measured from the machining center in an actual industrial plant. The experimental results demonstrate that the proposed method successfully detects faults in the actual machine tools." @default.
- W4310206895 created "2022-11-30" @default.
- W4310206895 creator A5004904498 @default.
- W4310206895 creator A5006344925 @default.
- W4310206895 creator A5007328325 @default.
- W4310206895 creator A5016570396 @default.
- W4310206895 creator A5023860451 @default.
- W4310206895 creator A5032019759 @default.
- W4310206895 creator A5034360611 @default.
- W4310206895 creator A5047492763 @default.
- W4310206895 date "2022-11-28" @default.
- W4310206895 modified "2023-10-14" @default.
- W4310206895 title "Fault Detection for CNC Machine Tools Using Auto-Associative Kernel Regression Based on Empirical Mode Decomposition" @default.
- W4310206895 cites W1488407762 @default.
- W4310206895 cites W1499842900 @default.
- W4310206895 cites W1972738875 @default.
- W4310206895 cites W1981240965 @default.
- W4310206895 cites W1996020380 @default.
- W4310206895 cites W2000304567 @default.
- W4310206895 cites W2007221293 @default.
- W4310206895 cites W2009465763 @default.
- W4310206895 cites W2028119131 @default.
- W4310206895 cites W2057689599 @default.
- W4310206895 cites W2063483719 @default.
- W4310206895 cites W2072405524 @default.
- W4310206895 cites W2072857564 @default.
- W4310206895 cites W2079666015 @default.
- W4310206895 cites W2127516119 @default.
- W4310206895 cites W2141224535 @default.
- W4310206895 cites W2141741499 @default.
- W4310206895 cites W2286630851 @default.
- W4310206895 cites W2321074348 @default.
- W4310206895 cites W2321348689 @default.
- W4310206895 cites W2555225906 @default.
- W4310206895 cites W2573263450 @default.
- W4310206895 cites W2789904726 @default.
- W4310206895 cites W2807877804 @default.
- W4310206895 cites W2886374926 @default.
- W4310206895 cites W2973607418 @default.
- W4310206895 cites W2978077076 @default.
- W4310206895 cites W2980347176 @default.
- W4310206895 cites W3010201892 @default.
- W4310206895 cites W3026881828 @default.
- W4310206895 cites W3039216919 @default.
- W4310206895 cites W3039416672 @default.
- W4310206895 cites W3094917921 @default.
- W4310206895 cites W3098270842 @default.
- W4310206895 cites W3159363500 @default.
- W4310206895 cites W4235457221 @default.
- W4310206895 cites W4235667863 @default.
- W4310206895 cites W562231173 @default.
- W4310206895 doi "https://doi.org/10.3390/pr10122529" @default.
- W4310206895 hasPublicationYear "2022" @default.
- W4310206895 type Work @default.
- W4310206895 citedByCount "1" @default.
- W4310206895 countsByYear W43102068952023 @default.
- W4310206895 crossrefType "journal-article" @default.
- W4310206895 hasAuthorship W4310206895A5004904498 @default.
- W4310206895 hasAuthorship W4310206895A5006344925 @default.
- W4310206895 hasAuthorship W4310206895A5007328325 @default.
- W4310206895 hasAuthorship W4310206895A5016570396 @default.
- W4310206895 hasAuthorship W4310206895A5023860451 @default.
- W4310206895 hasAuthorship W4310206895A5032019759 @default.
- W4310206895 hasAuthorship W4310206895A5034360611 @default.
- W4310206895 hasAuthorship W4310206895A5047492763 @default.
- W4310206895 hasBestOaLocation W43102068951 @default.
- W4310206895 hasConcept C106131492 @default.
- W4310206895 hasConcept C114614502 @default.
- W4310206895 hasConcept C119857082 @default.
- W4310206895 hasConcept C127313418 @default.
- W4310206895 hasConcept C127413603 @default.
- W4310206895 hasConcept C152745839 @default.
- W4310206895 hasConcept C154945302 @default.
- W4310206895 hasConcept C161584116 @default.
- W4310206895 hasConcept C165205528 @default.
- W4310206895 hasConcept C172707124 @default.
- W4310206895 hasConcept C175457265 @default.
- W4310206895 hasConcept C175551986 @default.
- W4310206895 hasConcept C199163554 @default.
- W4310206895 hasConcept C25570617 @default.
- W4310206895 hasConcept C31972630 @default.
- W4310206895 hasConcept C33923547 @default.
- W4310206895 hasConcept C41008148 @default.
- W4310206895 hasConcept C523214423 @default.
- W4310206895 hasConcept C5941749 @default.
- W4310206895 hasConcept C74193536 @default.
- W4310206895 hasConcept C78519656 @default.
- W4310206895 hasConceptScore W4310206895C106131492 @default.
- W4310206895 hasConceptScore W4310206895C114614502 @default.
- W4310206895 hasConceptScore W4310206895C119857082 @default.
- W4310206895 hasConceptScore W4310206895C127313418 @default.
- W4310206895 hasConceptScore W4310206895C127413603 @default.
- W4310206895 hasConceptScore W4310206895C152745839 @default.
- W4310206895 hasConceptScore W4310206895C154945302 @default.
- W4310206895 hasConceptScore W4310206895C161584116 @default.
- W4310206895 hasConceptScore W4310206895C165205528 @default.
- W4310206895 hasConceptScore W4310206895C172707124 @default.
- W4310206895 hasConceptScore W4310206895C175457265 @default.