Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310206921> ?p ?o ?g. }
- W4310206921 endingPage "221" @default.
- W4310206921 startingPage "192" @default.
- W4310206921 abstract "Abstract Technology‐based, open‐ended learning environments (OELEs) can capture detailed information of students' interactions as they work through a task or solve a problem embedded in the environment. This information, in the form of log data, has the potential to provide important insights about the practices adopted by students for scientific inquiry and problem solving. How to parse and analyse the log data to reveal evidence of multifaceted constructs like inquiry and problem solving holds the key to making interactive learning environments useful for assessing students' higher‐order competencies. In this paper, we present a systematic review of studies that used log data generated in OELEs to describe, model and assess scientific inquiry and problem solving. We identify and analyse 70 conference proceedings and journal papers published between 2012 and 2021. Our results reveal large variations in OELE and task characteristics, approaches used to extract features from log data and interpretation models used to link features to target constructs. While the educational data mining and learning analytics communities have made progress in leveraging log data to model inquiry and problem solving, multiple barriers still exist to hamper the production of representative, reproducible and generalizable results. Based on the trends identified, we lay out a set of recommendations pertaining to key aspects of the workflow that we believe will help the field develop more systematic approaches to designing and using OELEs for studying how students engage in inquiry and problem‐solving practices. Practitioner notes What is already known about this topic Research has shown that technology‐based, open‐ended learning environments (OELEs) that collect users' interaction data are potentially useful tools for engaging students in practice‐based STEM learning. More work is needed to identify generalizable principles of how to design OELE tasks to support student learning and how to analyse the log data to assess student performance. What this paper adds We identified multiple barriers to the production of sufficiently generalizable and robust results to inform practice, with respect to: (1) the design characteristics of the OELE‐based tasks, (2) the target competencies measured, (3) the approaches and techniques used to extract features from log files and (4) the models used to link features to the competencies. Based on this analysis, we can provide a series of specific recommendations to inform future research and facilitate the generalizability and interpretability of results: Making the data available in open‐access repositories, similar to the PISA tasks, for easy access and sharing. Defining target practices more precisely to better align task design with target practices and to facilitate between‐study comparisons. More systematic evaluation of OELE and task designs to improve the psychometric properties of OELE‐based measurement tasks and analysis processes. Focusing more on internal and external validation of both feature generation processes and statistical models, for example with data from different samples or by systematically varying the analysis methods. Implications for practice and/or policy Using the framework of evidence‐centered assessment design, we have identified relevant criteria for organizing and evaluating the diverse body of empirical studies on the topic and that policy makers and practitioners can use for their own further examinations. This paper identifies promising research and development areas on the measurement and assessment of higher‐order constructs with process data from OELE‐based tasks that government agencies and foundations can support. Researchers, technologists and assessment designers might find useful the insights and recommendations for how OELEs can enhance science assessment through thoughtful integration of learning theories, task design and data mining techniques." @default.
- W4310206921 created "2022-11-30" @default.
- W4310206921 creator A5007940211 @default.
- W4310206921 creator A5014516996 @default.
- W4310206921 creator A5019479887 @default.
- W4310206921 creator A5040109753 @default.
- W4310206921 date "2022-11-28" @default.
- W4310206921 modified "2023-10-01" @default.
- W4310206921 title "A systematic review of empirical studies using log data from open‐ended learning environments to measure science and engineering practices" @default.
- W4310206921 cites W113833030 @default.
- W4310206921 cites W1450046997 @default.
- W4310206921 cites W1489142649 @default.
- W4310206921 cites W1774520063 @default.
- W4310206921 cites W1937780047 @default.
- W4310206921 cites W1965684240 @default.
- W4310206921 cites W1965691419 @default.
- W4310206921 cites W1995852894 @default.
- W4310206921 cites W1997859426 @default.
- W4310206921 cites W1999719229 @default.
- W4310206921 cites W2017191825 @default.
- W4310206921 cites W2047773072 @default.
- W4310206921 cites W2049411841 @default.
- W4310206921 cites W2057278922 @default.
- W4310206921 cites W2057565635 @default.
- W4310206921 cites W2075620773 @default.
- W4310206921 cites W2091552421 @default.
- W4310206921 cites W2112841014 @default.
- W4310206921 cites W2123536472 @default.
- W4310206921 cites W2135167102 @default.
- W4310206921 cites W2293425283 @default.
- W4310206921 cites W2296861090 @default.
- W4310206921 cites W2305660949 @default.
- W4310206921 cites W2337043809 @default.
- W4310206921 cites W2342420110 @default.
- W4310206921 cites W2415859741 @default.
- W4310206921 cites W2470823987 @default.
- W4310206921 cites W2510408890 @default.
- W4310206921 cites W2535657622 @default.
- W4310206921 cites W2569549648 @default.
- W4310206921 cites W2594314024 @default.
- W4310206921 cites W2679032837 @default.
- W4310206921 cites W2701566821 @default.
- W4310206921 cites W2736558583 @default.
- W4310206921 cites W2751233568 @default.
- W4310206921 cites W2769685839 @default.
- W4310206921 cites W2777464620 @default.
- W4310206921 cites W2789862837 @default.
- W4310206921 cites W2794856295 @default.
- W4310206921 cites W2797079041 @default.
- W4310206921 cites W2853205561 @default.
- W4310206921 cites W2884346074 @default.
- W4310206921 cites W2887513454 @default.
- W4310206921 cites W2892062650 @default.
- W4310206921 cites W2900694348 @default.
- W4310206921 cites W2908963162 @default.
- W4310206921 cites W2917016599 @default.
- W4310206921 cites W2921739915 @default.
- W4310206921 cites W2944380920 @default.
- W4310206921 cites W2959022914 @default.
- W4310206921 cites W2967694189 @default.
- W4310206921 cites W2984884797 @default.
- W4310206921 cites W2990040915 @default.
- W4310206921 cites W3000108005 @default.
- W4310206921 cites W3005342412 @default.
- W4310206921 cites W3018063079 @default.
- W4310206921 cites W3018582530 @default.
- W4310206921 cites W3033315161 @default.
- W4310206921 cites W3048883315 @default.
- W4310206921 cites W3085685604 @default.
- W4310206921 cites W3086441582 @default.
- W4310206921 cites W3088226446 @default.
- W4310206921 cites W3114135898 @default.
- W4310206921 cites W3119719920 @default.
- W4310206921 cites W3141363748 @default.
- W4310206921 cites W3170008603 @default.
- W4310206921 cites W3174596511 @default.
- W4310206921 cites W4213421742 @default.
- W4310206921 cites W4214599927 @default.
- W4310206921 cites W4255215277 @default.
- W4310206921 cites W4298344532 @default.
- W4310206921 cites W44514345 @default.
- W4310206921 cites W751719980 @default.
- W4310206921 cites W813765498 @default.
- W4310206921 doi "https://doi.org/10.1111/bjet.13289" @default.
- W4310206921 hasPublicationYear "2022" @default.
- W4310206921 type Work @default.
- W4310206921 citedByCount "3" @default.
- W4310206921 countsByYear W43102069212023 @default.
- W4310206921 crossrefType "journal-article" @default.
- W4310206921 hasAuthorship W4310206921A5007940211 @default.
- W4310206921 hasAuthorship W4310206921A5014516996 @default.
- W4310206921 hasAuthorship W4310206921A5019479887 @default.
- W4310206921 hasAuthorship W4310206921A5040109753 @default.
- W4310206921 hasBestOaLocation W43102069211 @default.
- W4310206921 hasConcept C162324750 @default.
- W4310206921 hasConcept C177212765 @default.
- W4310206921 hasConcept C177264268 @default.
- W4310206921 hasConcept C187736073 @default.