Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310207239> ?p ?o ?g. }
- W4310207239 abstract "Aphids are one of the main pests of cotton and have been an important disaster limiting cotton yield. It is important to use satellite multispectral data to monitor the severity of cotton aphids in a timely and accurate manner on regional scale. Based on the combination of derivative of ratio spectra (DRS) and random forest (RF) algorithm, this study researched the quantitative monitoring model of cotton aphid severity based on Sentinel-2 data. First, the cotton area was extracted by using a supervised classification algorithm and the vegetation index threshold method. Then, the DRS algorithm was used to analyze the spectral characteristics of cotton aphids from three scales, and the Pearson correlation analysis algorithm was used to extract the bands significantly related to aphid infestation. Finally, the RF model was trained by ground sampling points and its accuracy was evaluated. The optimal model results were selected by the cross-validation method, and the accuracy was compared with the four classical classification algorithms. The results showed that (1) the canopy spectral reflectance curves at different grades of cotton aphid infestation were significantly different, with a significant positive correlation between cotton aphid grade and spectral reflectance in the visible band range and a negative correlation in the near-infrared band range; (2) The DRS algorithm could effectively remove the interference of the background endmember of satellite multispectral image pixels and enhance the aphid spectral features. The analysis results from three different scales and the evaluation results demonstrate the effectiveness of the algorithm in processing satellite multispectral data; (3) After the DRS processing, Sentinel-2 multispectral images could effectively classify the severity of cotton aphid infestation by the RF model with an overall classification accuracy of 80% and a kappa coefficient of 0.73. Compared with the results of four classical classification algorithms, the proposed algorithm has the best accuracy, which proves the superiority of RF. Based on satellite multispectral data, the DRS and RF can be combined to monitor the severity of cotton aphids on a regional scale, and the accuracy can meet the actual need." @default.
- W4310207239 created "2022-11-30" @default.
- W4310207239 creator A5014025784 @default.
- W4310207239 creator A5035619688 @default.
- W4310207239 creator A5039595364 @default.
- W4310207239 creator A5044849232 @default.
- W4310207239 creator A5059631163 @default.
- W4310207239 creator A5060730729 @default.
- W4310207239 date "2022-11-29" @default.
- W4310207239 modified "2023-10-14" @default.
- W4310207239 title "Cotton aphid infestation monitoring using Sentinel-2 MSI imagery coupled with derivative of ratio spectroscopy and random forest algorithm" @default.
- W4310207239 cites W1979944903 @default.
- W4310207239 cites W2010319424 @default.
- W4310207239 cites W2132424470 @default.
- W4310207239 cites W2148591750 @default.
- W4310207239 cites W2170186417 @default.
- W4310207239 cites W2340357023 @default.
- W4310207239 cites W2346996235 @default.
- W4310207239 cites W2399408884 @default.
- W4310207239 cites W2408917133 @default.
- W4310207239 cites W2702736887 @default.
- W4310207239 cites W2731271873 @default.
- W4310207239 cites W2754833306 @default.
- W4310207239 cites W2768921697 @default.
- W4310207239 cites W2791172538 @default.
- W4310207239 cites W2802370160 @default.
- W4310207239 cites W2886359012 @default.
- W4310207239 cites W2889725366 @default.
- W4310207239 cites W2889970548 @default.
- W4310207239 cites W2896242594 @default.
- W4310207239 cites W2899188099 @default.
- W4310207239 cites W2900344777 @default.
- W4310207239 cites W2903424497 @default.
- W4310207239 cites W2911964244 @default.
- W4310207239 cites W2918408501 @default.
- W4310207239 cites W2963363786 @default.
- W4310207239 cites W2969545732 @default.
- W4310207239 cites W2998652385 @default.
- W4310207239 cites W3001516132 @default.
- W4310207239 cites W3013580370 @default.
- W4310207239 cites W3034475401 @default.
- W4310207239 cites W3097566126 @default.
- W4310207239 cites W3108297739 @default.
- W4310207239 cites W3130661498 @default.
- W4310207239 cites W3140963746 @default.
- W4310207239 cites W3201427442 @default.
- W4310207239 cites W3203738044 @default.
- W4310207239 cites W3210741146 @default.
- W4310207239 cites W4206736393 @default.
- W4310207239 cites W4210616601 @default.
- W4310207239 cites W4286299948 @default.
- W4310207239 cites W4291378253 @default.
- W4310207239 cites W4293149815 @default.
- W4310207239 doi "https://doi.org/10.3389/fpls.2022.1029529" @default.
- W4310207239 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36523613" @default.
- W4310207239 hasPublicationYear "2022" @default.
- W4310207239 type Work @default.
- W4310207239 citedByCount "2" @default.
- W4310207239 countsByYear W43102072392023 @default.
- W4310207239 crossrefType "journal-article" @default.
- W4310207239 hasAuthorship W4310207239A5014025784 @default.
- W4310207239 hasAuthorship W4310207239A5035619688 @default.
- W4310207239 hasAuthorship W4310207239A5039595364 @default.
- W4310207239 hasAuthorship W4310207239A5044849232 @default.
- W4310207239 hasAuthorship W4310207239A5059631163 @default.
- W4310207239 hasAuthorship W4310207239A5060730729 @default.
- W4310207239 hasBestOaLocation W43102072391 @default.
- W4310207239 hasConcept C101000010 @default.
- W4310207239 hasConcept C104541649 @default.
- W4310207239 hasConcept C11413529 @default.
- W4310207239 hasConcept C121332964 @default.
- W4310207239 hasConcept C1276947 @default.
- W4310207239 hasConcept C142724271 @default.
- W4310207239 hasConcept C154945302 @default.
- W4310207239 hasConcept C160633673 @default.
- W4310207239 hasConcept C173163844 @default.
- W4310207239 hasConcept C18903297 @default.
- W4310207239 hasConcept C19269812 @default.
- W4310207239 hasConcept C205649164 @default.
- W4310207239 hasConcept C2776133958 @default.
- W4310207239 hasConcept C2776451879 @default.
- W4310207239 hasConcept C2778102629 @default.
- W4310207239 hasConcept C33923547 @default.
- W4310207239 hasConcept C39432304 @default.
- W4310207239 hasConcept C41008148 @default.
- W4310207239 hasConcept C58237817 @default.
- W4310207239 hasConcept C62649853 @default.
- W4310207239 hasConcept C6557445 @default.
- W4310207239 hasConcept C71924100 @default.
- W4310207239 hasConcept C86803240 @default.
- W4310207239 hasConceptScore W4310207239C101000010 @default.
- W4310207239 hasConceptScore W4310207239C104541649 @default.
- W4310207239 hasConceptScore W4310207239C11413529 @default.
- W4310207239 hasConceptScore W4310207239C121332964 @default.
- W4310207239 hasConceptScore W4310207239C1276947 @default.
- W4310207239 hasConceptScore W4310207239C142724271 @default.
- W4310207239 hasConceptScore W4310207239C154945302 @default.
- W4310207239 hasConceptScore W4310207239C160633673 @default.
- W4310207239 hasConceptScore W4310207239C173163844 @default.
- W4310207239 hasConceptScore W4310207239C18903297 @default.