Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310208552> ?p ?o ?g. }
- W4310208552 endingPage "123" @default.
- W4310208552 startingPage "123" @default.
- W4310208552 abstract "Depression is a serious mood disorder that is under-recognized and under-treated. Recent advances in mobile/wearable technology and ML (machine learning) have provided opportunities to detect the depressed moods of participants in their daily lives with their consent. To support high-accuracy, ubiquitous detection of depressed mood, we propose HADD, which provides new capabilities. First, HADD supports multimodal data analysis in order to enhance the accuracy of ubiquitous depressed mood detection by analyzing not only objective sensor data, but also subjective EMA (ecological momentary assessment) data collected by using mobile devices. In addition, HADD improves upon the accuracy of state-of-the-art ML algorithms for depressed mood detection via effective feature selection, data augmentation, and two-stage outlier detection. In our evaluation, HADD significantly enhanced the accuracy of a comprehensive set of ML models for depressed mood detection." @default.
- W4310208552 created "2022-11-30" @default.
- W4310208552 creator A5018073672 @default.
- W4310208552 creator A5026568147 @default.
- W4310208552 creator A5072571549 @default.
- W4310208552 date "2022-11-29" @default.
- W4310208552 modified "2023-10-06" @default.
- W4310208552 title "HADD: High-Accuracy Detection of Depressed Mood" @default.
- W4310208552 cites W1830668861 @default.
- W4310208552 cites W2001414307 @default.
- W4310208552 cites W2023917550 @default.
- W4310208552 cites W2051434435 @default.
- W4310208552 cites W2122646361 @default.
- W4310208552 cites W2123504579 @default.
- W4310208552 cites W2124084192 @default.
- W4310208552 cites W2128965734 @default.
- W4310208552 cites W2130042179 @default.
- W4310208552 cites W2132322340 @default.
- W4310208552 cites W2147085624 @default.
- W4310208552 cites W2156567116 @default.
- W4310208552 cites W2167101736 @default.
- W4310208552 cites W2321609854 @default.
- W4310208552 cites W2414738784 @default.
- W4310208552 cites W2504756137 @default.
- W4310208552 cites W2509963317 @default.
- W4310208552 cites W2527625754 @default.
- W4310208552 cites W2530305026 @default.
- W4310208552 cites W2560951263 @default.
- W4310208552 cites W2605108175 @default.
- W4310208552 cites W2774054212 @default.
- W4310208552 cites W2783557991 @default.
- W4310208552 cites W2787556368 @default.
- W4310208552 cites W2788029111 @default.
- W4310208552 cites W2809728483 @default.
- W4310208552 cites W2884718929 @default.
- W4310208552 cites W2891520230 @default.
- W4310208552 cites W2910561312 @default.
- W4310208552 cites W2912581524 @default.
- W4310208552 cites W2914765137 @default.
- W4310208552 cites W2981182836 @default.
- W4310208552 cites W2982133002 @default.
- W4310208552 cites W3007088653 @default.
- W4310208552 cites W3009112456 @default.
- W4310208552 cites W3032703209 @default.
- W4310208552 cites W3033191763 @default.
- W4310208552 cites W3034126796 @default.
- W4310208552 cites W3037651932 @default.
- W4310208552 cites W3042379185 @default.
- W4310208552 cites W3096853025 @default.
- W4310208552 cites W3111758161 @default.
- W4310208552 cites W3122544540 @default.
- W4310208552 cites W3126710441 @default.
- W4310208552 cites W3131720205 @default.
- W4310208552 cites W3140184886 @default.
- W4310208552 cites W3194159048 @default.
- W4310208552 doi "https://doi.org/10.3390/technologies10060123" @default.
- W4310208552 hasPublicationYear "2022" @default.
- W4310208552 type Work @default.
- W4310208552 citedByCount "2" @default.
- W4310208552 countsByYear W43102085522023 @default.
- W4310208552 crossrefType "journal-article" @default.
- W4310208552 hasAuthorship W4310208552A5018073672 @default.
- W4310208552 hasAuthorship W4310208552A5026568147 @default.
- W4310208552 hasAuthorship W4310208552A5072571549 @default.
- W4310208552 hasBestOaLocation W43102085521 @default.
- W4310208552 hasConcept C118552586 @default.
- W4310208552 hasConcept C139719470 @default.
- W4310208552 hasConcept C154945302 @default.
- W4310208552 hasConcept C15744967 @default.
- W4310208552 hasConcept C162324750 @default.
- W4310208552 hasConcept C2776867660 @default.
- W4310208552 hasConcept C2780733359 @default.
- W4310208552 hasConcept C41008148 @default.
- W4310208552 hasConcept C739882 @default.
- W4310208552 hasConceptScore W4310208552C118552586 @default.
- W4310208552 hasConceptScore W4310208552C139719470 @default.
- W4310208552 hasConceptScore W4310208552C154945302 @default.
- W4310208552 hasConceptScore W4310208552C15744967 @default.
- W4310208552 hasConceptScore W4310208552C162324750 @default.
- W4310208552 hasConceptScore W4310208552C2776867660 @default.
- W4310208552 hasConceptScore W4310208552C2780733359 @default.
- W4310208552 hasConceptScore W4310208552C41008148 @default.
- W4310208552 hasConceptScore W4310208552C739882 @default.
- W4310208552 hasFunder F4320306076 @default.
- W4310208552 hasIssue "6" @default.
- W4310208552 hasLocation W43102085521 @default.
- W4310208552 hasLocation W43102085522 @default.
- W4310208552 hasOpenAccess W4310208552 @default.
- W4310208552 hasPrimaryLocation W43102085521 @default.
- W4310208552 hasRelatedWork W1977098177 @default.
- W4310208552 hasRelatedWork W2019944782 @default.
- W4310208552 hasRelatedWork W2026668169 @default.
- W4310208552 hasRelatedWork W2028248483 @default.
- W4310208552 hasRelatedWork W2032533775 @default.
- W4310208552 hasRelatedWork W2037288335 @default.
- W4310208552 hasRelatedWork W2082477038 @default.
- W4310208552 hasRelatedWork W2724880343 @default.
- W4310208552 hasRelatedWork W2748952813 @default.