Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310211354> ?p ?o ?g. }
- W4310211354 endingPage "3784" @default.
- W4310211354 startingPage "3784" @default.
- W4310211354 abstract "Adrenocortical carcinoma (ACC) is a malignancy of the endocrine system. We collected clinical and pathological features, genomic mutations, DNA methylation profiles, and mRNA, lncRNA, microRNA, and somatic mutations in ACC patients from the TCGA, GSE19750, GSE33371, and GSE49278 cohorts. Based on the MOVICS algorithm, the patients were divided into ACC1-3 subtypes by comprehensive multi-omics data analysis. We found that immune-related pathways were more activated, and drug metabolism pathways were enriched in ACC1 subtype patients. Furthermore, ACC1 patients were sensitive to PD-1 immunotherapy and had the lowest sensitivity to chemotherapeutic drugs. Patients with the ACC2 subtype had the worst survival prognosis and the highest tumor-mutation rate. Meanwhile, cell-cycle-related pathways, amino-acid-synthesis pathways, and immunosuppressive cells were enriched in ACC2 patients. Steroid and cholesterol biosynthetic pathways were enriched in patients with the ACC3 subtype. DNA-repair-related pathways were enriched in subtypes ACC2 and ACC3. The sensitivity of the ACC2 subtype to cisplatin, doxorubicin, gemcitabine, and etoposide was better than that of the other two subtypes. For 5-fluorouracil, there was no significant difference in sensitivity to paclitaxel between the three groups. A comprehensive analysis of multi-omics data will provide new clues for the prognosis and treatment of patients with ACC." @default.
- W4310211354 created "2022-11-30" @default.
- W4310211354 creator A5001990753 @default.
- W4310211354 creator A5003607571 @default.
- W4310211354 creator A5006044524 @default.
- W4310211354 creator A5006453832 @default.
- W4310211354 creator A5055334199 @default.
- W4310211354 creator A5082884741 @default.
- W4310211354 creator A5090645420 @default.
- W4310211354 date "2022-11-26" @default.
- W4310211354 modified "2023-10-14" @default.
- W4310211354 title "Molecular Cluster Mining of Adrenocortical Carcinoma via Multi-Omics Data Analysis Aids Precise Clinical Therapy" @default.
- W4310211354 cites W1182168115 @default.
- W4310211354 cites W1969237887 @default.
- W4310211354 cites W1969539035 @default.
- W4310211354 cites W1971516997 @default.
- W4310211354 cites W1988818350 @default.
- W4310211354 cites W1992894543 @default.
- W4310211354 cites W2003456330 @default.
- W4310211354 cites W2003721774 @default.
- W4310211354 cites W2010038864 @default.
- W4310211354 cites W2022899908 @default.
- W4310211354 cites W2027726380 @default.
- W4310211354 cites W2028433016 @default.
- W4310211354 cites W2035711343 @default.
- W4310211354 cites W2042699075 @default.
- W4310211354 cites W2042724582 @default.
- W4310211354 cites W2047078419 @default.
- W4310211354 cites W2052882488 @default.
- W4310211354 cites W2053131896 @default.
- W4310211354 cites W2063264144 @default.
- W4310211354 cites W2068845486 @default.
- W4310211354 cites W2069440689 @default.
- W4310211354 cites W2071949631 @default.
- W4310211354 cites W2089587562 @default.
- W4310211354 cites W2098165008 @default.
- W4310211354 cites W2098622295 @default.
- W4310211354 cites W2100692201 @default.
- W4310211354 cites W2102885350 @default.
- W4310211354 cites W2103134006 @default.
- W4310211354 cites W2105459360 @default.
- W4310211354 cites W2117692326 @default.
- W4310211354 cites W2120218419 @default.
- W4310211354 cites W2130421223 @default.
- W4310211354 cites W2130430382 @default.
- W4310211354 cites W2131900960 @default.
- W4310211354 cites W2137074525 @default.
- W4310211354 cites W2140320478 @default.
- W4310211354 cites W2146553375 @default.
- W4310211354 cites W2152656267 @default.
- W4310211354 cites W2162723956 @default.
- W4310211354 cites W2162921257 @default.
- W4310211354 cites W2172877853 @default.
- W4310211354 cites W2214074259 @default.
- W4310211354 cites W2295096370 @default.
- W4310211354 cites W2346239022 @default.
- W4310211354 cites W2435243879 @default.
- W4310211354 cites W2544675721 @default.
- W4310211354 cites W2564922864 @default.
- W4310211354 cites W2604262203 @default.
- W4310211354 cites W2611654275 @default.
- W4310211354 cites W2767593474 @default.
- W4310211354 cites W2801926025 @default.
- W4310211354 cites W2883682970 @default.
- W4310211354 cites W2895456557 @default.
- W4310211354 cites W2900566045 @default.
- W4310211354 cites W2949336624 @default.
- W4310211354 cites W2971474713 @default.
- W4310211354 cites W3014131479 @default.
- W4310211354 cites W3109644239 @default.
- W4310211354 cites W3111894296 @default.
- W4310211354 cites W3116702853 @default.
- W4310211354 cites W3128955216 @default.
- W4310211354 cites W3137422569 @default.
- W4310211354 cites W3193515334 @default.
- W4310211354 cites W4205374262 @default.
- W4310211354 cites W4210884283 @default.
- W4310211354 cites W4220902000 @default.
- W4310211354 cites W4221128165 @default.
- W4310211354 cites W4225121106 @default.
- W4310211354 cites W4243169638 @default.
- W4310211354 cites W4285677612 @default.
- W4310211354 cites W4292166992 @default.
- W4310211354 doi "https://doi.org/10.3390/cells11233784" @default.
- W4310211354 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36497046" @default.
- W4310211354 hasPublicationYear "2022" @default.
- W4310211354 type Work @default.
- W4310211354 citedByCount "2" @default.
- W4310211354 countsByYear W43102113542023 @default.
- W4310211354 crossrefType "journal-article" @default.
- W4310211354 hasAuthorship W4310211354A5001990753 @default.
- W4310211354 hasAuthorship W4310211354A5003607571 @default.
- W4310211354 hasAuthorship W4310211354A5006044524 @default.
- W4310211354 hasAuthorship W4310211354A5006453832 @default.
- W4310211354 hasAuthorship W4310211354A5055334199 @default.
- W4310211354 hasAuthorship W4310211354A5082884741 @default.
- W4310211354 hasAuthorship W4310211354A5090645420 @default.
- W4310211354 hasBestOaLocation W43102113541 @default.