Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310218119> ?p ?o ?g. }
- W4310218119 abstract "A bstract We consider the fuzzy 4-sphere $$ {S}_N^4 $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>N</mml:mi> <mml:mn>4</mml:mn> </mml:msubsup> </mml:math> as a background in the IKKT matrix model, and explore the relation between $$ {S}_N^4 $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msubsup> <mml:mi>S</mml:mi> <mml:mi>N</mml:mi> <mml:mn>4</mml:mn> </mml:msubsup> </mml:math> and fuzzy twistor space in the semi-classical limit. A novel description for the IKKT-matrix model in terms of spinorial indices is given, which is reminiscent of $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> = 4 super-symmetric Yang-Mills (SYM) in 4 d . On fuzzy twistor space, the interactions of the IKKT model are of gravitational type. The higher-spin (HS) gauge theory emerging in this limit from the IKKT model, denoted as HS-IKKT, on fuzzy twistor space is shown to be a higher-spin extension of $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> = 4 SYM, with vertices that have more than two derivatives. We obtain its (Euclidean) spacetime action using the Penrose transform. Although this is a gravitational theory, it shares many features with the higher-spin extensions of Yang-Mills in 4 d flat space obtained in [1, 2]. The tree-level amplitudes of the HS-IKKT are studied in the semi-classical flat limit. The self-dual gauge sector of the IKKT model is obtained by dropping some parts of the cubic- and the quartic interactions, which is shown to reduce to a $$ mathcal{BF} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>BF</mml:mi> </mml:math> -type action on commutative deformed projective twistor space." @default.
- W4310218119 created "2022-11-30" @default.
- W4310218119 creator A5006266210 @default.
- W4310218119 creator A5020567620 @default.
- W4310218119 date "2022-11-25" @default.
- W4310218119 modified "2023-09-30" @default.
- W4310218119 title "A twistorial description of the IKKT-matrix model" @default.
- W4310218119 cites W1749712644 @default.
- W4310218119 cites W1760509497 @default.
- W4310218119 cites W1785466636 @default.
- W4310218119 cites W1929723316 @default.
- W4310218119 cites W1963571567 @default.
- W4310218119 cites W1966837943 @default.
- W4310218119 cites W1967630456 @default.
- W4310218119 cites W1969165119 @default.
- W4310218119 cites W1973814875 @default.
- W4310218119 cites W1974223699 @default.
- W4310218119 cites W1975521599 @default.
- W4310218119 cites W1977941024 @default.
- W4310218119 cites W1984382776 @default.
- W4310218119 cites W1984391023 @default.
- W4310218119 cites W1990573813 @default.
- W4310218119 cites W1992660255 @default.
- W4310218119 cites W2001926452 @default.
- W4310218119 cites W2005104809 @default.
- W4310218119 cites W2007613320 @default.
- W4310218119 cites W2011682415 @default.
- W4310218119 cites W2015548884 @default.
- W4310218119 cites W2018172788 @default.
- W4310218119 cites W2019838560 @default.
- W4310218119 cites W2022653327 @default.
- W4310218119 cites W2024703391 @default.
- W4310218119 cites W2027399320 @default.
- W4310218119 cites W2031232815 @default.
- W4310218119 cites W2031762218 @default.
- W4310218119 cites W2034104446 @default.
- W4310218119 cites W2039687190 @default.
- W4310218119 cites W2041186407 @default.
- W4310218119 cites W2045633952 @default.
- W4310218119 cites W2048146900 @default.
- W4310218119 cites W2049713000 @default.
- W4310218119 cites W2052963037 @default.
- W4310218119 cites W2057062405 @default.
- W4310218119 cites W2066531045 @default.
- W4310218119 cites W2076039931 @default.
- W4310218119 cites W2080710437 @default.
- W4310218119 cites W2083365421 @default.
- W4310218119 cites W2088474879 @default.
- W4310218119 cites W2091099245 @default.
- W4310218119 cites W2092254751 @default.
- W4310218119 cites W2099610601 @default.
- W4310218119 cites W2128233898 @default.
- W4310218119 cites W2137073937 @default.
- W4310218119 cites W2139685892 @default.
- W4310218119 cites W2142588662 @default.
- W4310218119 cites W2146790194 @default.
- W4310218119 cites W2147924505 @default.
- W4310218119 cites W2150148365 @default.
- W4310218119 cites W2166964057 @default.
- W4310218119 cites W2403917030 @default.
- W4310218119 cites W2521967561 @default.
- W4310218119 cites W2557205520 @default.
- W4310218119 cites W2582703134 @default.
- W4310218119 cites W2727839336 @default.
- W4310218119 cites W2750499488 @default.
- W4310218119 cites W2763450149 @default.
- W4310218119 cites W2798511064 @default.
- W4310218119 cites W2808240686 @default.
- W4310218119 cites W2884767392 @default.
- W4310218119 cites W2898019331 @default.
- W4310218119 cites W2902808800 @default.
- W4310218119 cites W2950685187 @default.
- W4310218119 cites W2952490413 @default.
- W4310218119 cites W2962702721 @default.
- W4310218119 cites W2963321606 @default.
- W4310218119 cites W2973206800 @default.
- W4310218119 cites W2987935414 @default.
- W4310218119 cites W3007097740 @default.
- W4310218119 cites W3024803126 @default.
- W4310218119 cites W3098743894 @default.
- W4310218119 cites W3099371662 @default.
- W4310218119 cites W3099424314 @default.
- W4310218119 cites W3099500137 @default.
- W4310218119 cites W3099531154 @default.
- W4310218119 cites W3100599407 @default.
- W4310218119 cites W3101546934 @default.
- W4310218119 cites W3101550857 @default.
- W4310218119 cites W3101636055 @default.
- W4310218119 cites W3101659956 @default.
- W4310218119 cites W3102282086 @default.
- W4310218119 cites W3102302464 @default.
- W4310218119 cites W3102649979 @default.
- W4310218119 cites W3103919950 @default.
- W4310218119 cites W3104541799 @default.
- W4310218119 cites W3104627398 @default.
- W4310218119 cites W3105195667 @default.
- W4310218119 cites W3105204682 @default.
- W4310218119 cites W3105338502 @default.
- W4310218119 cites W3105744581 @default.
- W4310218119 cites W3114717025 @default.