Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310232032> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4310232032 endingPage "86" @default.
- W4310232032 startingPage "76" @default.
- W4310232032 abstract "In the process of field exploration, along with regular flooding, a significant part of the wells is flooded prematurely due to leakage of the string and outer annulus. In an effort to intensify the flow of oil to the bottom of wells in field conditions, specialists often try to solve this problem by using various technologies that change the reservoir characteristics of the formation. Any increase in pressure that exceeds the strength of the rocks in compression or tension leads to rock deformation (destruction of the cement stone, creation of new cracks). Moreover, repeated operations under pressure, as a rule, lead to an increase in water cut and the appearance of behind-the-casing circulations. For that reason, an important condition for maintaining their efficient operation is the timely forecasting of such negative phenomena as behind-casing cross flow and casing leakage. The purpose of the work is to increase the efficiency of well interventions and workover operations by using machine learning algorithms for predicting well disturbances. Prediction based on machine learning methods, regression analysis, identifying outliers in the data, visualization and interactive processing. The algorithms based on oil wells operation data allow training the forecasting model and, on its basis, determine the presence or absence of disturbances in the wells. As a result, the machine forecast showed high accuracy in identifying wells with disturbances. Based on this, candidate wells can be selected for further work. For each specific well, an optimal set of studies can be planned, as well as candidate wells can be selected for further repair and isolation work. In addition, in the course of this work, a set of scientific and technical solutions was developed using machine learning algorithms. This approach will allow predicting disturbances in the well without stopping it." @default.
- W4310232032 created "2022-11-30" @default.
- W4310232032 creator A5000103890 @default.
- W4310232032 creator A5005255607 @default.
- W4310232032 creator A5006147775 @default.
- W4310232032 creator A5023931953 @default.
- W4310232032 creator A5047623953 @default.
- W4310232032 creator A5051282787 @default.
- W4310232032 date "2023-01-01" @default.
- W4310232032 modified "2023-10-01" @default.
- W4310232032 title "APPLICATION OF MACHINE LEARNING METHODS FOR PREDICTING WELL DISTURBANCES" @default.
- W4310232032 cites W1560731656 @default.
- W4310232032 cites W1982667385 @default.
- W4310232032 cites W2061069258 @default.
- W4310232032 cites W2084539843 @default.
- W4310232032 cites W2297589637 @default.
- W4310232032 cites W2338788198 @default.
- W4310232032 cites W2596528009 @default.
- W4310232032 cites W2812033998 @default.
- W4310232032 cites W2914057887 @default.
- W4310232032 cites W2922187008 @default.
- W4310232032 cites W2957480063 @default.
- W4310232032 cites W3024079176 @default.
- W4310232032 cites W3091347587 @default.
- W4310232032 cites W3158546242 @default.
- W4310232032 cites W3163728519 @default.
- W4310232032 cites W3168050924 @default.
- W4310232032 cites W3169863807 @default.
- W4310232032 cites W3175110156 @default.
- W4310232032 cites W3177032352 @default.
- W4310232032 cites W3186934564 @default.
- W4310232032 cites W3207612762 @default.
- W4310232032 cites W4200243615 @default.
- W4310232032 cites W4248132034 @default.
- W4310232032 cites W4293244683 @default.
- W4310232032 doi "https://doi.org/10.5937/jaes0-38729" @default.
- W4310232032 hasPublicationYear "2023" @default.
- W4310232032 type Work @default.
- W4310232032 citedByCount "0" @default.
- W4310232032 crossrefType "journal-article" @default.
- W4310232032 hasAuthorship W4310232032A5000103890 @default.
- W4310232032 hasAuthorship W4310232032A5005255607 @default.
- W4310232032 hasAuthorship W4310232032A5006147775 @default.
- W4310232032 hasAuthorship W4310232032A5023931953 @default.
- W4310232032 hasAuthorship W4310232032A5047623953 @default.
- W4310232032 hasAuthorship W4310232032A5051282787 @default.
- W4310232032 hasBestOaLocation W43102320321 @default.
- W4310232032 hasConcept C119857082 @default.
- W4310232032 hasConcept C124101348 @default.
- W4310232032 hasConcept C127413603 @default.
- W4310232032 hasConcept C154945302 @default.
- W4310232032 hasConcept C2776364302 @default.
- W4310232032 hasConcept C2777560178 @default.
- W4310232032 hasConcept C30399818 @default.
- W4310232032 hasConcept C33451869 @default.
- W4310232032 hasConcept C41008148 @default.
- W4310232032 hasConcept C57054060 @default.
- W4310232032 hasConcept C78762247 @default.
- W4310232032 hasConceptScore W4310232032C119857082 @default.
- W4310232032 hasConceptScore W4310232032C124101348 @default.
- W4310232032 hasConceptScore W4310232032C127413603 @default.
- W4310232032 hasConceptScore W4310232032C154945302 @default.
- W4310232032 hasConceptScore W4310232032C2776364302 @default.
- W4310232032 hasConceptScore W4310232032C2777560178 @default.
- W4310232032 hasConceptScore W4310232032C30399818 @default.
- W4310232032 hasConceptScore W4310232032C33451869 @default.
- W4310232032 hasConceptScore W4310232032C41008148 @default.
- W4310232032 hasConceptScore W4310232032C57054060 @default.
- W4310232032 hasConceptScore W4310232032C78762247 @default.
- W4310232032 hasIssue "2" @default.
- W4310232032 hasLocation W43102320321 @default.
- W4310232032 hasOpenAccess W4310232032 @default.
- W4310232032 hasPrimaryLocation W43102320321 @default.
- W4310232032 hasRelatedWork W2081531616 @default.
- W4310232032 hasRelatedWork W2350890496 @default.
- W4310232032 hasRelatedWork W2357811016 @default.
- W4310232032 hasRelatedWork W2364338895 @default.
- W4310232032 hasRelatedWork W2364709789 @default.
- W4310232032 hasRelatedWork W2383642848 @default.
- W4310232032 hasRelatedWork W2385218128 @default.
- W4310232032 hasRelatedWork W2394120841 @default.
- W4310232032 hasRelatedWork W3170801565 @default.
- W4310232032 hasRelatedWork W3204900570 @default.
- W4310232032 hasVolume "21" @default.
- W4310232032 isParatext "false" @default.
- W4310232032 isRetracted "false" @default.
- W4310232032 workType "article" @default.