Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310232756> ?p ?o ?g. }
- W4310232756 endingPage "15779" @default.
- W4310232756 startingPage "15779" @default.
- W4310232756 abstract "Bridges in Ukraine are one of the most important components of the infrastructure, requiring attention from government agencies and constant funding. The object of the study was the methodology for quantifying the condition of bridge components. The Artificial Neural Network-based (ANN) tool was developed to quantify the technical condition of bridge components. The literature analysis showed that in most cases the datasets were obtained during the inspection of bridges to solve the problems of assessing the current technical condition. The lack of such a database prompted the creation of a dataset on the basis of the Classification Tables of the Operating Conditions of the Bridge Components (CT). Based on CTs, five datasets were formed to assess the condition of the bridge components: bridge span, bridge deck, pier caps beam, piers and abutments, approaches. The next step of this study was creating, training, validating and testing ANN models. The network with ADAM loss function and softmax activation showed the best results. The optimal values of MAPE and R2 were achieved at the 100th epoch with 64 neurons in the hidden layer and were equal to 0.1% and 0.99998, respectively. The practical application of the ANN models was carried out on the most common type of bridge in Ukraine, namely, a road beam bridge of small length, made of precast concrete. The novelty of this study consists of the development of a tool based on the use of ANN model, and the proposal to modify the methodology for quantifying the condition of bridge components. This will allow minimizing the uncertainties associated with the subjective judgments of experts, as well as increasing the accuracy of the assessment." @default.
- W4310232756 created "2022-11-30" @default.
- W4310232756 creator A5000088764 @default.
- W4310232756 creator A5028201303 @default.
- W4310232756 creator A5033819367 @default.
- W4310232756 creator A5046528127 @default.
- W4310232756 creator A5047481635 @default.
- W4310232756 creator A5065537698 @default.
- W4310232756 creator A5085284088 @default.
- W4310232756 date "2022-11-27" @default.
- W4310232756 modified "2023-10-06" @default.
- W4310232756 title "Modeling the Quantitative Assessment of the Condition of Bridge Components Made of Reinforced Concrete Using ANN" @default.
- W4310232756 cites W1982665183 @default.
- W4310232756 cites W2032322466 @default.
- W4310232756 cites W2066565247 @default.
- W4310232756 cites W2067302180 @default.
- W4310232756 cites W2121908400 @default.
- W4310232756 cites W2124377346 @default.
- W4310232756 cites W2338743801 @default.
- W4310232756 cites W2793734850 @default.
- W4310232756 cites W2899627945 @default.
- W4310232756 cites W2930890426 @default.
- W4310232756 cites W2967879902 @default.
- W4310232756 cites W2972652036 @default.
- W4310232756 cites W2972960767 @default.
- W4310232756 cites W3000798471 @default.
- W4310232756 cites W3022913064 @default.
- W4310232756 cites W3037166419 @default.
- W4310232756 cites W3045740496 @default.
- W4310232756 cites W3101916075 @default.
- W4310232756 cites W3176893523 @default.
- W4310232756 cites W3179092994 @default.
- W4310232756 cites W3184190042 @default.
- W4310232756 cites W3198090185 @default.
- W4310232756 cites W3199689051 @default.
- W4310232756 cites W3215578205 @default.
- W4310232756 cites W4200042552 @default.
- W4310232756 cites W4200443018 @default.
- W4310232756 cites W4229454541 @default.
- W4310232756 cites W4234089778 @default.
- W4310232756 cites W4245851137 @default.
- W4310232756 cites W4281736128 @default.
- W4310232756 cites W4289174225 @default.
- W4310232756 cites W4289711664 @default.
- W4310232756 cites W4297147033 @default.
- W4310232756 cites W4304172265 @default.
- W4310232756 cites W4309089935 @default.
- W4310232756 cites W96161441 @default.
- W4310232756 doi "https://doi.org/10.3390/su142315779" @default.
- W4310232756 hasPublicationYear "2022" @default.
- W4310232756 type Work @default.
- W4310232756 citedByCount "4" @default.
- W4310232756 countsByYear W43102327562023 @default.
- W4310232756 crossrefType "journal-article" @default.
- W4310232756 hasAuthorship W4310232756A5000088764 @default.
- W4310232756 hasAuthorship W4310232756A5028201303 @default.
- W4310232756 hasAuthorship W4310232756A5033819367 @default.
- W4310232756 hasAuthorship W4310232756A5046528127 @default.
- W4310232756 hasAuthorship W4310232756A5047481635 @default.
- W4310232756 hasAuthorship W4310232756A5065537698 @default.
- W4310232756 hasAuthorship W4310232756A5085284088 @default.
- W4310232756 hasBestOaLocation W43102327561 @default.
- W4310232756 hasConcept C100776233 @default.
- W4310232756 hasConcept C125450124 @default.
- W4310232756 hasConcept C126322002 @default.
- W4310232756 hasConcept C127413603 @default.
- W4310232756 hasConcept C127416549 @default.
- W4310232756 hasConcept C138885662 @default.
- W4310232756 hasConcept C144133560 @default.
- W4310232756 hasConcept C154945302 @default.
- W4310232756 hasConcept C155032097 @default.
- W4310232756 hasConcept C157892014 @default.
- W4310232756 hasConcept C162853370 @default.
- W4310232756 hasConcept C164624739 @default.
- W4310232756 hasConcept C188441871 @default.
- W4310232756 hasConcept C27206212 @default.
- W4310232756 hasConcept C2778738651 @default.
- W4310232756 hasConcept C2778753569 @default.
- W4310232756 hasConcept C41008148 @default.
- W4310232756 hasConcept C50644808 @default.
- W4310232756 hasConcept C66938386 @default.
- W4310232756 hasConcept C71924100 @default.
- W4310232756 hasConceptScore W4310232756C100776233 @default.
- W4310232756 hasConceptScore W4310232756C125450124 @default.
- W4310232756 hasConceptScore W4310232756C126322002 @default.
- W4310232756 hasConceptScore W4310232756C127413603 @default.
- W4310232756 hasConceptScore W4310232756C127416549 @default.
- W4310232756 hasConceptScore W4310232756C138885662 @default.
- W4310232756 hasConceptScore W4310232756C144133560 @default.
- W4310232756 hasConceptScore W4310232756C154945302 @default.
- W4310232756 hasConceptScore W4310232756C155032097 @default.
- W4310232756 hasConceptScore W4310232756C157892014 @default.
- W4310232756 hasConceptScore W4310232756C162853370 @default.
- W4310232756 hasConceptScore W4310232756C164624739 @default.
- W4310232756 hasConceptScore W4310232756C188441871 @default.
- W4310232756 hasConceptScore W4310232756C27206212 @default.
- W4310232756 hasConceptScore W4310232756C2778738651 @default.
- W4310232756 hasConceptScore W4310232756C2778753569 @default.