Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310232844> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4310232844 endingPage "1111" @default.
- W4310232844 startingPage "1111" @default.
- W4310232844 abstract "Non-invasive techniques for the detection of apple fruit damages are central to the correct operation of sorting lines ensuring storability of the collected fruit batches. The choice of optimal method of fruit imaging and efficient image processing method is still a subject of debate. Here, we have dissected the information content of hyperspectral images focusing on either spectral component, spatial component, or both. We have employed random forest (RF) classifiers using different parameters as inputs: reflectance spectra, vegetation indices (VIs), and spatial texture descriptors (local binary patterns, or LBP), comparing their performance in the task of damage detection in apple fruit. The amount of information in raw hypercubes was found to be over an order of magnitude excessive for the end-to-end problem of classification. Converting spectra to vegetation indices has resulted in a 60-fold compression with no significant loss of information relevant for phenotyping and more robust performance with respect to varying illumination conditions. We concluded that the advanced machine learning approaches could be more efficient if complemented by spectral information about the objects in question. We discuss the potential advantages and pitfalls of the different approaches to the machine learning-based processing of hyperspectral data for fruit grading." @default.
- W4310232844 created "2022-11-30" @default.
- W4310232844 creator A5007557022 @default.
- W4310232844 creator A5008447912 @default.
- W4310232844 creator A5014599115 @default.
- W4310232844 creator A5039803635 @default.
- W4310232844 creator A5051809313 @default.
- W4310232844 creator A5056383081 @default.
- W4310232844 creator A5090390603 @default.
- W4310232844 date "2022-11-26" @default.
- W4310232844 modified "2023-09-30" @default.
- W4310232844 title "Mutual Augmentation of Spectral Sensing and Machine Learning for Non-Invasive Detection of Apple Fruit Damages" @default.
- W4310232844 cites W1677182931 @default.
- W4310232844 cites W1980502729 @default.
- W4310232844 cites W1988392308 @default.
- W4310232844 cites W2015159529 @default.
- W4310232844 cites W2046791778 @default.
- W4310232844 cites W2080116978 @default.
- W4310232844 cites W2091232472 @default.
- W4310232844 cites W2107412299 @default.
- W4310232844 cites W2135198734 @default.
- W4310232844 cites W2172196609 @default.
- W4310232844 cites W2185489349 @default.
- W4310232844 cites W2246545731 @default.
- W4310232844 cites W2338357934 @default.
- W4310232844 cites W2757734040 @default.
- W4310232844 cites W2769862293 @default.
- W4310232844 cites W2794012220 @default.
- W4310232844 cites W2901633508 @default.
- W4310232844 cites W2910987047 @default.
- W4310232844 cites W2913847768 @default.
- W4310232844 cites W2943309330 @default.
- W4310232844 cites W2963847595 @default.
- W4310232844 cites W2974501433 @default.
- W4310232844 cites W3006354545 @default.
- W4310232844 cites W3033843996 @default.
- W4310232844 cites W3087782282 @default.
- W4310232844 cites W3110737647 @default.
- W4310232844 cites W3110885380 @default.
- W4310232844 cites W3136720895 @default.
- W4310232844 cites W3158557294 @default.
- W4310232844 cites W3198279808 @default.
- W4310232844 cites W3208493710 @default.
- W4310232844 cites W4206495681 @default.
- W4310232844 cites W4285618777 @default.
- W4310232844 doi "https://doi.org/10.3390/horticulturae8121111" @default.
- W4310232844 hasPublicationYear "2022" @default.
- W4310232844 type Work @default.
- W4310232844 citedByCount "5" @default.
- W4310232844 countsByYear W43102328442023 @default.
- W4310232844 crossrefType "journal-article" @default.
- W4310232844 hasAuthorship W4310232844A5007557022 @default.
- W4310232844 hasAuthorship W4310232844A5008447912 @default.
- W4310232844 hasAuthorship W4310232844A5014599115 @default.
- W4310232844 hasAuthorship W4310232844A5039803635 @default.
- W4310232844 hasAuthorship W4310232844A5051809313 @default.
- W4310232844 hasAuthorship W4310232844A5056383081 @default.
- W4310232844 hasAuthorship W4310232844A5090390603 @default.
- W4310232844 hasBestOaLocation W43102328441 @default.
- W4310232844 hasConcept C127313418 @default.
- W4310232844 hasConcept C153180895 @default.
- W4310232844 hasConcept C154945302 @default.
- W4310232844 hasConcept C159078339 @default.
- W4310232844 hasConcept C169258074 @default.
- W4310232844 hasConcept C33923547 @default.
- W4310232844 hasConcept C41008148 @default.
- W4310232844 hasConcept C62649853 @default.
- W4310232844 hasConceptScore W4310232844C127313418 @default.
- W4310232844 hasConceptScore W4310232844C153180895 @default.
- W4310232844 hasConceptScore W4310232844C154945302 @default.
- W4310232844 hasConceptScore W4310232844C159078339 @default.
- W4310232844 hasConceptScore W4310232844C169258074 @default.
- W4310232844 hasConceptScore W4310232844C33923547 @default.
- W4310232844 hasConceptScore W4310232844C41008148 @default.
- W4310232844 hasConceptScore W4310232844C62649853 @default.
- W4310232844 hasFunder F4320322733 @default.
- W4310232844 hasIssue "12" @default.
- W4310232844 hasLocation W43102328441 @default.
- W4310232844 hasLocation W43102328442 @default.
- W4310232844 hasOpenAccess W4310232844 @default.
- W4310232844 hasPrimaryLocation W43102328441 @default.
- W4310232844 hasRelatedWork W2014286142 @default.
- W4310232844 hasRelatedWork W2028628118 @default.
- W4310232844 hasRelatedWork W2083270190 @default.
- W4310232844 hasRelatedWork W2385371209 @default.
- W4310232844 hasRelatedWork W2948825694 @default.
- W4310232844 hasRelatedWork W2964383635 @default.
- W4310232844 hasRelatedWork W2998323711 @default.
- W4310232844 hasRelatedWork W3173596272 @default.
- W4310232844 hasRelatedWork W4242609709 @default.
- W4310232844 hasRelatedWork W1991437568 @default.
- W4310232844 hasVolume "8" @default.
- W4310232844 isParatext "false" @default.
- W4310232844 isRetracted "false" @default.
- W4310232844 workType "article" @default.