Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310235246> ?p ?o ?g. }
- W4310235246 endingPage "12075" @default.
- W4310235246 startingPage "12075" @default.
- W4310235246 abstract "We propose a steady-state aerodynamic data-driven method to predict the incompressible flow around airfoils of NACA (National Advisory Committee for Aeronautics) 0012-series. Using the Signed Distance Function (SDF) to parameterize the geometric and flow condition setups, the prediction core of the method is constructed essentially by a consecutive framework of a convolutional neural network (CNN) and a deconvolutional neural network (DCNN). Impact of training parameters on the behavior of the proposed CNN-DCNN model is studied, so that appropriate learning rate, mini-batch size, and random deactivation rate are specified. Tested by “unseen” airfoil geometries and far-field velocities, it is found that the prediction process is three orders of magnitudes faster than a corresponding Computational Fluid Dynamics (CFD) simulation, while relative errors are maintained lower than 1% on most of the sample points. The proposed model manages to capture the essential dynamics of the flow field, as its predictions correspond reasonably with the reconstructed field by proper orthogonal decomposition (POD). The performance and accuracy of the proposed model indicate that the deep learning-based approach has great potential as a robust predictive tool for aerodynamic design and optimization." @default.
- W4310235246 created "2022-11-30" @default.
- W4310235246 creator A5017743698 @default.
- W4310235246 creator A5053911309 @default.
- W4310235246 creator A5055988292 @default.
- W4310235246 creator A5069163885 @default.
- W4310235246 creator A5071772442 @default.
- W4310235246 creator A5077878137 @default.
- W4310235246 date "2022-11-25" @default.
- W4310235246 modified "2023-10-14" @default.
- W4310235246 title "Fast Prediction of Flow Field around Airfoils Based on Deep Convolutional Neural Network" @default.
- W4310235246 cites W1528439235 @default.
- W4310235246 cites W1990634119 @default.
- W4310235246 cites W1999244633 @default.
- W4310235246 cites W2003496759 @default.
- W4310235246 cites W2016814974 @default.
- W4310235246 cites W2041992845 @default.
- W4310235246 cites W2042704594 @default.
- W4310235246 cites W2132169421 @default.
- W4310235246 cites W2138002307 @default.
- W4310235246 cites W2172180203 @default.
- W4310235246 cites W2194513159 @default.
- W4310235246 cites W2322032452 @default.
- W4310235246 cites W2331950761 @default.
- W4310235246 cites W2332535989 @default.
- W4310235246 cites W2519348545 @default.
- W4310235246 cites W2585298970 @default.
- W4310235246 cites W2621240502 @default.
- W4310235246 cites W2729750142 @default.
- W4310235246 cites W2784249632 @default.
- W4310235246 cites W2791892818 @default.
- W4310235246 cites W2886416623 @default.
- W4310235246 cites W2901359814 @default.
- W4310235246 cites W2934144656 @default.
- W4310235246 cites W2935478899 @default.
- W4310235246 cites W2942998296 @default.
- W4310235246 cites W2962777873 @default.
- W4310235246 cites W2964277698 @default.
- W4310235246 cites W2965202597 @default.
- W4310235246 cites W2969275936 @default.
- W4310235246 cites W2987245967 @default.
- W4310235246 cites W2989483616 @default.
- W4310235246 cites W3020274705 @default.
- W4310235246 cites W3038687103 @default.
- W4310235246 cites W3041118015 @default.
- W4310235246 cites W3082012552 @default.
- W4310235246 cites W3099412592 @default.
- W4310235246 cites W3100989476 @default.
- W4310235246 cites W3108318745 @default.
- W4310235246 cites W3109816739 @default.
- W4310235246 cites W3112714421 @default.
- W4310235246 cites W3130549388 @default.
- W4310235246 cites W3136848364 @default.
- W4310235246 cites W3194208465 @default.
- W4310235246 cites W4200173733 @default.
- W4310235246 cites W4236993164 @default.
- W4310235246 cites W4253843412 @default.
- W4310235246 doi "https://doi.org/10.3390/app122312075" @default.
- W4310235246 hasPublicationYear "2022" @default.
- W4310235246 type Work @default.
- W4310235246 citedByCount "1" @default.
- W4310235246 countsByYear W43102352462022 @default.
- W4310235246 crossrefType "journal-article" @default.
- W4310235246 hasAuthorship W4310235246A5017743698 @default.
- W4310235246 hasAuthorship W4310235246A5053911309 @default.
- W4310235246 hasAuthorship W4310235246A5055988292 @default.
- W4310235246 hasAuthorship W4310235246A5069163885 @default.
- W4310235246 hasAuthorship W4310235246A5071772442 @default.
- W4310235246 hasAuthorship W4310235246A5077878137 @default.
- W4310235246 hasBestOaLocation W43102352461 @default.
- W4310235246 hasConcept C100086909 @default.
- W4310235246 hasConcept C108583219 @default.
- W4310235246 hasConcept C112124176 @default.
- W4310235246 hasConcept C11413529 @default.
- W4310235246 hasConcept C127413603 @default.
- W4310235246 hasConcept C13393347 @default.
- W4310235246 hasConcept C146978453 @default.
- W4310235246 hasConcept C154945302 @default.
- W4310235246 hasConcept C1633027 @default.
- W4310235246 hasConcept C202444582 @default.
- W4310235246 hasConcept C2524010 @default.
- W4310235246 hasConcept C33923547 @default.
- W4310235246 hasConcept C38349280 @default.
- W4310235246 hasConcept C41008148 @default.
- W4310235246 hasConcept C50644808 @default.
- W4310235246 hasConcept C81363708 @default.
- W4310235246 hasConcept C9652623 @default.
- W4310235246 hasConceptScore W4310235246C100086909 @default.
- W4310235246 hasConceptScore W4310235246C108583219 @default.
- W4310235246 hasConceptScore W4310235246C112124176 @default.
- W4310235246 hasConceptScore W4310235246C11413529 @default.
- W4310235246 hasConceptScore W4310235246C127413603 @default.
- W4310235246 hasConceptScore W4310235246C13393347 @default.
- W4310235246 hasConceptScore W4310235246C146978453 @default.
- W4310235246 hasConceptScore W4310235246C154945302 @default.
- W4310235246 hasConceptScore W4310235246C1633027 @default.
- W4310235246 hasConceptScore W4310235246C202444582 @default.
- W4310235246 hasConceptScore W4310235246C2524010 @default.