Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310237089> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4310237089 abstract "Femoral neck fracture and lacunar cerebral infarction (LCI) are the most common diseases in the elderly. When LCI patients undergo a series of traumas such as surgery, their postoperative recovery results are often poor. Moreover, few studies have explored the relationship between LCI and femoral neck fracture in the elderly. Therefore, this study will develop a ML (machine learning)-based model to predict LCI before surgery in elderly patients with a femoral neck fracture.Professional medical staff retrospectively collected the data of 161 patients with unilateral femoral neck fracture who underwent surgery in the Second Affiliated Hospital of Wenzhou Medical University database from January 1, 2015, to January 1, 2020. Patients were divided into two groups based on LCI (diagnosis based on cranial CT image): the LCI group and the non-LCI group. Preoperative clinical characteristics and preoperative laboratory data were collected for all patients. Features were selected by univariate and multivariate logistic regression analysis, with age, white blood cell (WBC), prealbumin, aspartate aminotransferase (AST), total protein, globulin, serum creatinine (Scr), blood urea nitrogen (Bun)/Scr, lactate dehydrogenase (LDH), serum sodium and fibrinogen as the features of the ML model. Five machine learning algorithms, Logistic regression (LR), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Decision tree (DT), were used in combination with preoperative clinical characteristics and laboratory data to establish a predictive model of LCI in patients with a femoral neck fracture. Furthermore, indices like the area under the receiver operating characteristic (AUROC), sensitivity, specificity, and accuracy were calculated to test the models' performance.The AUROC of 5 ML models ranged from 0.76 to 0.95. It turned out that the RF model demonstrated the highest performance in predicting LCI for femoral neck fracture patients before surgery, whose AUROC was 0.95, sensitivity 1.00, specificity 0.81, and accuracy 0.90 in validation sets. Furthermore, the top 4 high-ranking variables in the RF model were prealbumin, fibrinogen, globulin and Scr, in descending order of importance.In this study, 5 ML models were developed and validated for patients with femoral neck fracture to predict preoperative LCI. RF model provides an excellent predictive value with an AUROC of 0.95. Clinicians can better conduct multidisciplinary perioperative management for patients with femoral neck fractures through this model and accelerate the postoperative recovery of patients." @default.
- W4310237089 created "2022-11-30" @default.
- W4310237089 creator A5008035638 @default.
- W4310237089 creator A5009542446 @default.
- W4310237089 creator A5038584091 @default.
- W4310237089 creator A5065388559 @default.
- W4310237089 date "2022-11-28" @default.
- W4310237089 modified "2023-09-28" @default.
- W4310237089 title "Application of machine learning model to predict lacunar cerebral infarction in elderly patients with femoral neck fracture before surgery" @default.
- W4310237089 cites W1525517981 @default.
- W4310237089 cites W1987145789 @default.
- W4310237089 cites W1990373871 @default.
- W4310237089 cites W2017522190 @default.
- W4310237089 cites W2053156863 @default.
- W4310237089 cites W2077344057 @default.
- W4310237089 cites W2127924510 @default.
- W4310237089 cites W2144454270 @default.
- W4310237089 cites W2177870565 @default.
- W4310237089 cites W2270089292 @default.
- W4310237089 cites W2619793749 @default.
- W4310237089 cites W2739093382 @default.
- W4310237089 cites W2769736031 @default.
- W4310237089 cites W2785282033 @default.
- W4310237089 cites W2793421792 @default.
- W4310237089 cites W2921028506 @default.
- W4310237089 cites W2943491685 @default.
- W4310237089 cites W2946370981 @default.
- W4310237089 cites W2947924379 @default.
- W4310237089 cites W2963444517 @default.
- W4310237089 cites W2979002664 @default.
- W4310237089 cites W3018420018 @default.
- W4310237089 cites W3025510041 @default.
- W4310237089 cites W3039248878 @default.
- W4310237089 cites W3119302278 @default.
- W4310237089 cites W3178514335 @default.
- W4310237089 cites W3212705888 @default.
- W4310237089 cites W3214926429 @default.
- W4310237089 cites W4210595637 @default.
- W4310237089 cites W4220977814 @default.
- W4310237089 cites W4241672734 @default.
- W4310237089 doi "https://doi.org/10.1186/s12877-022-03631-1" @default.
- W4310237089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36443675" @default.
- W4310237089 hasPublicationYear "2022" @default.
- W4310237089 type Work @default.
- W4310237089 citedByCount "2" @default.
- W4310237089 countsByYear W43102370892023 @default.
- W4310237089 crossrefType "journal-article" @default.
- W4310237089 hasAuthorship W4310237089A5008035638 @default.
- W4310237089 hasAuthorship W4310237089A5009542446 @default.
- W4310237089 hasAuthorship W4310237089A5038584091 @default.
- W4310237089 hasAuthorship W4310237089A5065388559 @default.
- W4310237089 hasBestOaLocation W43102370891 @default.
- W4310237089 hasConcept C126322002 @default.
- W4310237089 hasConcept C141071460 @default.
- W4310237089 hasConcept C151956035 @default.
- W4310237089 hasConcept C2775854910 @default.
- W4310237089 hasConcept C2776541429 @default.
- W4310237089 hasConcept C71924100 @default.
- W4310237089 hasConceptScore W4310237089C126322002 @default.
- W4310237089 hasConceptScore W4310237089C141071460 @default.
- W4310237089 hasConceptScore W4310237089C151956035 @default.
- W4310237089 hasConceptScore W4310237089C2775854910 @default.
- W4310237089 hasConceptScore W4310237089C2776541429 @default.
- W4310237089 hasConceptScore W4310237089C71924100 @default.
- W4310237089 hasIssue "1" @default.
- W4310237089 hasLocation W43102370891 @default.
- W4310237089 hasLocation W43102370892 @default.
- W4310237089 hasLocation W43102370893 @default.
- W4310237089 hasLocation W43102370894 @default.
- W4310237089 hasOpenAccess W4310237089 @default.
- W4310237089 hasPrimaryLocation W43102370891 @default.
- W4310237089 hasRelatedWork W1586374228 @default.
- W4310237089 hasRelatedWork W2003938723 @default.
- W4310237089 hasRelatedWork W2045240138 @default.
- W4310237089 hasRelatedWork W2047967234 @default.
- W4310237089 hasRelatedWork W2118496982 @default.
- W4310237089 hasRelatedWork W2364998975 @default.
- W4310237089 hasRelatedWork W2369162477 @default.
- W4310237089 hasRelatedWork W2439875401 @default.
- W4310237089 hasRelatedWork W4238867864 @default.
- W4310237089 hasRelatedWork W2525756941 @default.
- W4310237089 hasVolume "22" @default.
- W4310237089 isParatext "false" @default.
- W4310237089 isRetracted "false" @default.
- W4310237089 workType "article" @default.