Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310239708> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4310239708 endingPage "87" @default.
- W4310239708 startingPage "65" @default.
- W4310239708 abstract "On antiperiodic boundary value problem for a semilinear differential inclusion of a fractional order q. The investigation of control systems with nonlinear units forms a complicated and very important part of contemporary mathematical control theory and harmonic analysis, which has numerous applications and attracts the attention of a number of researchers around the world. In turn, the development of the theory of differential inclusions is associated with the fact that they provide a convenient and natural tool for describing control systems of various classes, systems with discontinuous characteristics, which are studied in various branches of the optimal control theory, mathematical physics, radio physics, acoustics etc. One of the best approaches to the study of this kind of problems is provided by the methods of multivalued and nonlinear analysis, which are distinguished as very powerful, effective and useful. However, the solving of these problems within the frameworks of existing theories is often a very difficult problem, since many of them find sufficiently adequate description in terms of differential equations and inclusions with fractional derivatives. The theory of differential equations of fractional order originates from the ideas of Leibniz and Euler, but only by the end of the XX century, interest in this topic increased significantly. In the 70s - 80s, this direction was greatly developed by the works of A.A. Kilbas, S.G. Samko, O.I. Marichev, I. Podlubny, K.S. Miller, B. Ross, R. Hilfer, F. Mainardi, H. M. Srivastava. Notice that the research in this direction will open up prospects and new opportunities for the studying of non-standard systems that specialists encounter while describing the development of physical and chemical processes in porous, rarefied and fractal media. It is known that a periodic boundary value problem is one of the classical boundary value problems of differential equations and inclusions. At the same time, in recent years, along with periodic boundary value problems, antiperiodic boundary value problems are of great interest due to their applications in physics and interpolation problems.
 In this paper, we study an antiperiodic boundary value problem for semilinear differential inclusions with Caputo fractional derivative of order q in Banach spaces. We assume that the nonlinear part is a multivalued map obeying the conditions of the Caratheodory type, boundedness on bounded sets, and the regularity condition expressed in terms of measures of noncompactness. In the first section, we present a necessary information from fractional analysis, Mittag -- Leffler function, theory of measures of noncompactness, and multivalued condensing maps. In the second section, we construct the Green's function for the given problem, then, we introduce into consideration a resolving multivalued integral operator in the space of continuous functions. The solutions to the boundary value problem are fixed points of the resolving multioperator. Therefore, we use a generalization of Sadovskii type theorem to prove their existence. Then, we first prove that the resolving multioperator is upper semicontinuous and condensing with respect to the two-component measure of noncompactness in the space of continuous functions. In a proof of a main theorem of the paper, we show that a resolving multioperator transforms a closed ball into itself. Thus, we obtain that the resolving multioperator obeys all the conditions of the fixed point theorem and we prove the existence of solutions to the antiperiodic boundary value problem." @default.
- W4310239708 created "2022-11-30" @default.
- W4310239708 creator A5076571522 @default.
- W4310239708 date "2022-11-29" @default.
- W4310239708 modified "2023-09-26" @default.
- W4310239708 title "On antiperiodic boundary value problem for a semilinear differential inclusion of a fractional order 2 < q < 3" @default.
- W4310239708 cites W2044758163 @default.
- W4310239708 cites W2057109675 @default.
- W4310239708 cites W2087977401 @default.
- W4310239708 cites W2093354218 @default.
- W4310239708 cites W2613999258 @default.
- W4310239708 cites W2990428341 @default.
- W4310239708 cites W3110688260 @default.
- W4310239708 cites W3118792379 @default.
- W4310239708 cites W4238303245 @default.
- W4310239708 cites W4241229354 @default.
- W4310239708 cites W4293200410 @default.
- W4310239708 cites W4301223505 @default.
- W4310239708 cites W47667379 @default.
- W4310239708 cites W576238630 @default.
- W4310239708 cites W78714360 @default.
- W4310239708 doi "https://doi.org/10.29039/1729-3901-2021-20-2-65-87" @default.
- W4310239708 hasPublicationYear "2022" @default.
- W4310239708 type Work @default.
- W4310239708 citedByCount "0" @default.
- W4310239708 crossrefType "journal-article" @default.
- W4310239708 hasAuthorship W4310239708A5076571522 @default.
- W4310239708 hasBestOaLocation W43102397081 @default.
- W4310239708 hasConcept C10138342 @default.
- W4310239708 hasConcept C121332964 @default.
- W4310239708 hasConcept C134306372 @default.
- W4310239708 hasConcept C154249771 @default.
- W4310239708 hasConcept C158622935 @default.
- W4310239708 hasConcept C162324750 @default.
- W4310239708 hasConcept C182306322 @default.
- W4310239708 hasConcept C182310444 @default.
- W4310239708 hasConcept C28826006 @default.
- W4310239708 hasConcept C33923547 @default.
- W4310239708 hasConcept C62520636 @default.
- W4310239708 hasConcept C70834904 @default.
- W4310239708 hasConcept C78045399 @default.
- W4310239708 hasConceptScore W4310239708C10138342 @default.
- W4310239708 hasConceptScore W4310239708C121332964 @default.
- W4310239708 hasConceptScore W4310239708C134306372 @default.
- W4310239708 hasConceptScore W4310239708C154249771 @default.
- W4310239708 hasConceptScore W4310239708C158622935 @default.
- W4310239708 hasConceptScore W4310239708C162324750 @default.
- W4310239708 hasConceptScore W4310239708C182306322 @default.
- W4310239708 hasConceptScore W4310239708C182310444 @default.
- W4310239708 hasConceptScore W4310239708C28826006 @default.
- W4310239708 hasConceptScore W4310239708C33923547 @default.
- W4310239708 hasConceptScore W4310239708C62520636 @default.
- W4310239708 hasConceptScore W4310239708C70834904 @default.
- W4310239708 hasConceptScore W4310239708C78045399 @default.
- W4310239708 hasIssue "2" @default.
- W4310239708 hasLocation W43102397081 @default.
- W4310239708 hasOpenAccess W4310239708 @default.
- W4310239708 hasPrimaryLocation W43102397081 @default.
- W4310239708 hasRelatedWork W203395323 @default.
- W4310239708 hasRelatedWork W2185885961 @default.
- W4310239708 hasRelatedWork W2325471356 @default.
- W4310239708 hasRelatedWork W2382078545 @default.
- W4310239708 hasRelatedWork W2599888196 @default.
- W4310239708 hasRelatedWork W2932461387 @default.
- W4310239708 hasRelatedWork W3120578870 @default.
- W4310239708 hasRelatedWork W3150584883 @default.
- W4310239708 hasRelatedWork W3208018845 @default.
- W4310239708 hasRelatedWork W4312722051 @default.
- W4310239708 hasVolume "0" @default.
- W4310239708 isParatext "false" @default.
- W4310239708 isRetracted "false" @default.
- W4310239708 workType "article" @default.