Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310251330> ?p ?o ?g. }
- W4310251330 endingPage "823" @default.
- W4310251330 startingPage "814" @default.
- W4310251330 abstract "Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force-fields to high-throughput first-principles methods. The methodology allows an accurate and automated structural determination for molecules, atomic clusters, nanoparticles, and solid surfaces, fundamental to understanding chemical processes in catalysis and environmental sciences, for instance. In this work, we propose a new genetic algorithm software, GAMaterial, implemented in Python3.x, that performs global searches to elucidate the structures of atomic clusters, doped clusters or materials and atomic clusters on surfaces. For all these applications, it is possible to accelerate the GA search by using machine learning (ML), the ML@GA method, to build subsequent populations. Results for ML@GA applied for the dopant distributions in atomic clusters are presented. The GAMaterial software was applied for the automatic structural search for the Ti6 O12 cluster, doping Al in Si11 (4Al@Si11 ) and Na10 supported on graphene (Na10 @graphene), where DFTB calculations were used to sample the complex search surfaces with reasonably low computational cost. Finally, the global search by GA of the Mo8 C4 cluster was considered, where DFT calculations were made with the deMon2k code, which is interfaced with GAMaterial." @default.
- W4310251330 created "2022-11-30" @default.
- W4310251330 creator A5009388177 @default.
- W4310251330 creator A5015229950 @default.
- W4310251330 creator A5038964141 @default.
- W4310251330 creator A5058479607 @default.
- W4310251330 creator A5060687268 @default.
- W4310251330 creator A5066354389 @default.
- W4310251330 creator A5080199946 @default.
- W4310251330 date "2022-11-29" @default.
- W4310251330 modified "2023-10-17" @default.
- W4310251330 title "<scp>GAMaterial</scp> —A genetic‐algorithm software for material design and discovery" @default.
- W4310251330 cites W1567694153 @default.
- W4310251330 cites W1589523878 @default.
- W4310251330 cites W1966439021 @default.
- W4310251330 cites W1968166922 @default.
- W4310251330 cites W1988833834 @default.
- W4310251330 cites W1990010932 @default.
- W4310251330 cites W1990311518 @default.
- W4310251330 cites W1998898196 @default.
- W4310251330 cites W2000413114 @default.
- W4310251330 cites W2001447809 @default.
- W4310251330 cites W2011301426 @default.
- W4310251330 cites W2022411249 @default.
- W4310251330 cites W2024060531 @default.
- W4310251330 cites W2032459813 @default.
- W4310251330 cites W2038533471 @default.
- W4310251330 cites W2038642329 @default.
- W4310251330 cites W2039035988 @default.
- W4310251330 cites W2043528684 @default.
- W4310251330 cites W2051831029 @default.
- W4310251330 cites W2062813385 @default.
- W4310251330 cites W2064372248 @default.
- W4310251330 cites W2074389948 @default.
- W4310251330 cites W2078192683 @default.
- W4310251330 cites W2086702546 @default.
- W4310251330 cites W2092157292 @default.
- W4310251330 cites W2092188627 @default.
- W4310251330 cites W2120145199 @default.
- W4310251330 cites W2128126619 @default.
- W4310251330 cites W2171118683 @default.
- W4310251330 cites W2212185539 @default.
- W4310251330 cites W2313224025 @default.
- W4310251330 cites W2320153103 @default.
- W4310251330 cites W2324747868 @default.
- W4310251330 cites W2327161550 @default.
- W4310251330 cites W2330597381 @default.
- W4310251330 cites W2345040711 @default.
- W4310251330 cites W2581176328 @default.
- W4310251330 cites W2586607207 @default.
- W4310251330 cites W2611945747 @default.
- W4310251330 cites W2763356727 @default.
- W4310251330 cites W2782639338 @default.
- W4310251330 cites W2804030504 @default.
- W4310251330 cites W2806250317 @default.
- W4310251330 cites W2939304876 @default.
- W4310251330 cites W2976720228 @default.
- W4310251330 cites W2982162017 @default.
- W4310251330 cites W3006457086 @default.
- W4310251330 cites W3007783889 @default.
- W4310251330 cites W3013002235 @default.
- W4310251330 cites W3017367712 @default.
- W4310251330 cites W3034310241 @default.
- W4310251330 cites W3038136327 @default.
- W4310251330 cites W3048565185 @default.
- W4310251330 cites W3092670396 @default.
- W4310251330 cites W3099878876 @default.
- W4310251330 cites W3103145119 @default.
- W4310251330 cites W3105621768 @default.
- W4310251330 cites W3156259029 @default.
- W4310251330 cites W3160363205 @default.
- W4310251330 cites W3173572433 @default.
- W4310251330 cites W3175391598 @default.
- W4310251330 cites W3189164715 @default.
- W4310251330 cites W3189165443 @default.
- W4310251330 cites W4205339990 @default.
- W4310251330 cites W4240011798 @default.
- W4310251330 cites W4281741332 @default.
- W4310251330 cites W4304757197 @default.
- W4310251330 doi "https://doi.org/10.1002/jcc.27043" @default.
- W4310251330 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36444916" @default.
- W4310251330 hasPublicationYear "2022" @default.
- W4310251330 type Work @default.
- W4310251330 citedByCount "2" @default.
- W4310251330 countsByYear W43102513302023 @default.
- W4310251330 crossrefType "journal-article" @default.
- W4310251330 hasAuthorship W4310251330A5009388177 @default.
- W4310251330 hasAuthorship W4310251330A5015229950 @default.
- W4310251330 hasAuthorship W4310251330A5038964141 @default.
- W4310251330 hasAuthorship W4310251330A5058479607 @default.
- W4310251330 hasAuthorship W4310251330A5060687268 @default.
- W4310251330 hasAuthorship W4310251330A5066354389 @default.
- W4310251330 hasAuthorship W4310251330A5080199946 @default.
- W4310251330 hasConcept C11413529 @default.
- W4310251330 hasConcept C119857082 @default.
- W4310251330 hasConcept C121332964 @default.
- W4310251330 hasConcept C121864883 @default.
- W4310251330 hasConcept C164866538 @default.