Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310251351> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4310251351 endingPage "59" @default.
- W4310251351 startingPage "47" @default.
- W4310251351 abstract "Introduction. Intensive anthropogenic impact leads to a sharp reduction in natural reserves of many valuable plants. In this regard, previously obtained data on stocks quickly become obsolete. Therefore, the inventory of stocks of medicinal plants in the Russian Federation as a whole and the Middle Urals, in particular, remains an urgent problem. Unfortunately, modern technologies are not being implemented intensively enough in the domestic pharmacy. In our opinion, the reasons for this are expensive software, insufficient theoretical and practical skills to work on personal computers, as well as the specifics of the industry. Despite this, the use of geographic information systems (GIS) in pharmacy is quite promising [7–9]. The use of geographical information systems as a methodological basis will make it possible to map the areas of medicinal plants, to analyze plant communities not only for the territory of the Middle Urals at a high scientific level [1, 4]. Aim. Development of predictive models for the distribution of medicinal plants based on a comprehensive assessment of the state of populations of wild medicinal plants of the Middle Urals. Materials and methods. The determination of raw material reserves of the studied species of medicinal plants was carried out on specific thickets according to the generally accepted methodology. The authenticity of raw materials was established by the macroscopic method when collecting samples of raw materials. In the course of the study, stocks of 4652 populations of 27 species of medicinal plants growing in the Middle Urals were studied. The collection of the material was carried out in the period from 2006 to 2019 during the survey of the administrative districts of the Perm Krai and the Sverdlovsk region. A comparative comprehensive assessment of resource and phytochemical indicators was studied using the example of 6 species of wild medicinal plants: Origanum vulgare L., Lamiaceae , Hypericum perforatum L., Hypericaceae and Hypericum maculatum Crantz, Hypericaceae , Tanacetum vulgare L., Asteraceae , Artemisia absinthium L., Asteraceae , Leonurus quinquelobatus Gilib., Lamiaceae , Achillea millefolium L., Asteraceae . Results and discussion. In the course of resource and phytochemical studies of representatives of the medicinal flora of the Middle Urals, a comprehensive assessment of the state of populations of wild medicinal plants – sources of medicinal plant raw materials ( herba Origani vulgaris , herba Hyperici , flores Tanaceti vulgaris , herba Artemisiae absinthii , herba Achilleae millefolii and herba Leonuri ) was carried out. A geospatial analysis of the distribution of medicinal plant populations by soil types within the regions of the Middle Urals was carried out. An algorithm for constructing predictive models of the distribution of populations of wild medicinal plants of the Middle Urals has been worked out. A set of maps of the occurrence of medicinal plants in the study area has been developed. Conclusion. The conducted complex of studies will allow updating information about the medicinal flora of the Middle Urals. Developed on the example of a number of representatives of the medicinal flora of the Middle Urals, the algorithm for constructing forecast maps can be used for any regions in the presence of appropriate topos." @default.
- W4310251351 created "2022-11-30" @default.
- W4310251351 creator A5006373776 @default.
- W4310251351 creator A5064888569 @default.
- W4310251351 creator A5086457184 @default.
- W4310251351 date "2022-11-24" @default.
- W4310251351 modified "2023-10-02" @default.
- W4310251351 title "Development of a Predictive Model for Estimating Stocks of Medicinal Plants Using GIS Tools on the Example of the Middle Urals" @default.
- W4310251351 cites W2587861975 @default.
- W4310251351 cites W2762552747 @default.
- W4310251351 cites W2802607375 @default.
- W4310251351 cites W2939806477 @default.
- W4310251351 cites W2980175355 @default.
- W4310251351 cites W2990889456 @default.
- W4310251351 cites W4210434413 @default.
- W4310251351 cites W4229818596 @default.
- W4310251351 doi "https://doi.org/10.33380/2305-2066-2022-11-4-47-59" @default.
- W4310251351 hasPublicationYear "2022" @default.
- W4310251351 type Work @default.
- W4310251351 citedByCount "0" @default.
- W4310251351 crossrefType "journal-article" @default.
- W4310251351 hasAuthorship W4310251351A5006373776 @default.
- W4310251351 hasAuthorship W4310251351A5064888569 @default.
- W4310251351 hasAuthorship W4310251351A5086457184 @default.
- W4310251351 hasBestOaLocation W43102513511 @default.
- W4310251351 hasConcept C107826830 @default.
- W4310251351 hasConcept C110121322 @default.
- W4310251351 hasConcept C127413603 @default.
- W4310251351 hasConcept C134306372 @default.
- W4310251351 hasConcept C18762648 @default.
- W4310251351 hasConcept C18903297 @default.
- W4310251351 hasConcept C205649164 @default.
- W4310251351 hasConcept C206139338 @default.
- W4310251351 hasConcept C2779158651 @default.
- W4310251351 hasConcept C33923547 @default.
- W4310251351 hasConcept C39432304 @default.
- W4310251351 hasConcept C54286561 @default.
- W4310251351 hasConcept C78519656 @default.
- W4310251351 hasConcept C86803240 @default.
- W4310251351 hasConceptScore W4310251351C107826830 @default.
- W4310251351 hasConceptScore W4310251351C110121322 @default.
- W4310251351 hasConceptScore W4310251351C127413603 @default.
- W4310251351 hasConceptScore W4310251351C134306372 @default.
- W4310251351 hasConceptScore W4310251351C18762648 @default.
- W4310251351 hasConceptScore W4310251351C18903297 @default.
- W4310251351 hasConceptScore W4310251351C205649164 @default.
- W4310251351 hasConceptScore W4310251351C206139338 @default.
- W4310251351 hasConceptScore W4310251351C2779158651 @default.
- W4310251351 hasConceptScore W4310251351C33923547 @default.
- W4310251351 hasConceptScore W4310251351C39432304 @default.
- W4310251351 hasConceptScore W4310251351C54286561 @default.
- W4310251351 hasConceptScore W4310251351C78519656 @default.
- W4310251351 hasConceptScore W4310251351C86803240 @default.
- W4310251351 hasIssue "4" @default.
- W4310251351 hasLocation W43102513511 @default.
- W4310251351 hasOpenAccess W4310251351 @default.
- W4310251351 hasPrimaryLocation W43102513511 @default.
- W4310251351 hasRelatedWork W2352694402 @default.
- W4310251351 hasRelatedWork W2356602073 @default.
- W4310251351 hasRelatedWork W2357039269 @default.
- W4310251351 hasRelatedWork W2367954800 @default.
- W4310251351 hasRelatedWork W2388759309 @default.
- W4310251351 hasRelatedWork W2392014865 @default.
- W4310251351 hasRelatedWork W2392131371 @default.
- W4310251351 hasRelatedWork W2393478211 @default.
- W4310251351 hasRelatedWork W2808875161 @default.
- W4310251351 hasRelatedWork W4200143505 @default.
- W4310251351 hasVolume "11" @default.
- W4310251351 isParatext "false" @default.
- W4310251351 isRetracted "false" @default.
- W4310251351 workType "article" @default.