Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310251617> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4310251617 endingPage "591" @default.
- W4310251617 startingPage "582" @default.
- W4310251617 abstract "Objective: The objective of this work is to classify heart attack cases using the open-access heart attack dataset and one of the machine learning techniques called XGBoost. Another aim is to reveal the risk factors associated with having a heart attack as a result of the modeling and to associate these factors with heart attack.Methods: In the study, modeling was done with the XGBoost method using an open access data set including the factors associated with heart attack. Model results were evaluated with accuracy, balanced accuracy, specificity, positive predictive value, negative predictive value, and F1-score performance metrics. In addition, 10-fold cross-validation method was used in the modeling phase. Finally, variable importance values were obtained by modeling. Results: Accuracy, balanced accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score from by XGBoost modeling were 89.4%, 89.4%, 88.4%, 90.3%, 88.4%, 90.3%, and 88.4%, respectively. According to the variable importance values obtained for the input variables in the data set examined in this study, thal2, oldpeak, thal3, ca1, and exang1 were obtained as the most important variables associated with heart attack.Conclusions: With the machine learning model used, the heart attack dataset was classified quite successfully, and the associated risk factors were revealed. Machine learning models can be used as clinical decision support systems for early diagnosis and treatment." @default.
- W4310251617 created "2022-11-30" @default.
- W4310251617 creator A5074151447 @default.
- W4310251617 creator A5078259919 @default.
- W4310251617 date "2022-11-30" @default.
- W4310251617 modified "2023-09-26" @default.
- W4310251617 title "Estimation of Risk Factors Related to Heart Attack with Xgboost That Machine Learning Model" @default.
- W4310251617 cites W1971746603 @default.
- W4310251617 cites W2123504579 @default.
- W4310251617 cites W2168380552 @default.
- W4310251617 cites W2326786471 @default.
- W4310251617 cites W2801596954 @default.
- W4310251617 cites W2895763047 @default.
- W4310251617 cites W2940010972 @default.
- W4310251617 cites W2953532875 @default.
- W4310251617 cites W2981792167 @default.
- W4310251617 cites W3208674021 @default.
- W4310251617 cites W4214856947 @default.
- W4310251617 cites W4251708881 @default.
- W4310251617 doi "https://doi.org/10.19127/mbsjohs.1142542" @default.
- W4310251617 hasPublicationYear "2022" @default.
- W4310251617 type Work @default.
- W4310251617 citedByCount "0" @default.
- W4310251617 crossrefType "journal-article" @default.
- W4310251617 hasAuthorship W4310251617A5074151447 @default.
- W4310251617 hasAuthorship W4310251617A5078259919 @default.
- W4310251617 hasBestOaLocation W43102516171 @default.
- W4310251617 hasConcept C119857082 @default.
- W4310251617 hasConcept C126322002 @default.
- W4310251617 hasConcept C154945302 @default.
- W4310251617 hasConcept C3019719930 @default.
- W4310251617 hasConcept C41008148 @default.
- W4310251617 hasConcept C45804977 @default.
- W4310251617 hasConcept C71924100 @default.
- W4310251617 hasConceptScore W4310251617C119857082 @default.
- W4310251617 hasConceptScore W4310251617C126322002 @default.
- W4310251617 hasConceptScore W4310251617C154945302 @default.
- W4310251617 hasConceptScore W4310251617C3019719930 @default.
- W4310251617 hasConceptScore W4310251617C41008148 @default.
- W4310251617 hasConceptScore W4310251617C45804977 @default.
- W4310251617 hasConceptScore W4310251617C71924100 @default.
- W4310251617 hasIssue "4" @default.
- W4310251617 hasLocation W43102516171 @default.
- W4310251617 hasLocation W43102516172 @default.
- W4310251617 hasOpenAccess W4310251617 @default.
- W4310251617 hasPrimaryLocation W43102516171 @default.
- W4310251617 hasRelatedWork W2961085424 @default.
- W4310251617 hasRelatedWork W3046775127 @default.
- W4310251617 hasRelatedWork W3160244858 @default.
- W4310251617 hasRelatedWork W3170094116 @default.
- W4310251617 hasRelatedWork W4205958290 @default.
- W4310251617 hasRelatedWork W4285260836 @default.
- W4310251617 hasRelatedWork W4286629047 @default.
- W4310251617 hasRelatedWork W4306321456 @default.
- W4310251617 hasRelatedWork W4306674287 @default.
- W4310251617 hasRelatedWork W4224009465 @default.
- W4310251617 hasVolume "8" @default.
- W4310251617 isParatext "false" @default.
- W4310251617 isRetracted "false" @default.
- W4310251617 workType "article" @default.