Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310251917> ?p ?o ?g. }
- W4310251917 endingPage "84" @default.
- W4310251917 startingPage "73" @default.
- W4310251917 abstract "This paper derives analytic expressions for the expected value of sample information (EVSI), the expected value of distribution information, and the optimal sample size when data consists of independent draws from a bounded sequence of integers. Because of the challenges of creating tractable EVSI expressions, most existing work valuing data does so in one of three ways: (1) analytically through closed-form expressions on the upper bound of the value of data, (2) calculating the expected value of data using numerical comparisons of decisions made using simulated data to optimal decisions for which the underlying data distribution is known, or (3) using variance reduction as proxy for the uncertainty reduction that accompanies more data. For the very flexible case of modeling integer-valued observations using a multinomial data-generating process with Dirichlet prior, this paper develops expressions that (1) generalize existing beta-binomial computations, (2) do not require prior knowledge of some underlying “true” distribution, and (3) can be computed prior to the collection of any sample data." @default.
- W4310251917 created "2022-11-30" @default.
- W4310251917 creator A5029188907 @default.
- W4310251917 creator A5045858390 @default.
- W4310251917 creator A5050610555 @default.
- W4310251917 creator A5089127356 @default.
- W4310251917 date "2023-03-01" @default.
- W4310251917 modified "2023-10-17" @default.
- W4310251917 title "A Closed-Form EVSI Expression for a Multinomial Data-Generating Process" @default.
- W4310251917 cites W1828651507 @default.
- W4310251917 cites W1916916970 @default.
- W4310251917 cites W1967026460 @default.
- W4310251917 cites W1976396793 @default.
- W4310251917 cites W1985492817 @default.
- W4310251917 cites W1990482617 @default.
- W4310251917 cites W2004101233 @default.
- W4310251917 cites W2006085898 @default.
- W4310251917 cites W2014812085 @default.
- W4310251917 cites W2032091434 @default.
- W4310251917 cites W2033955838 @default.
- W4310251917 cites W2041098432 @default.
- W4310251917 cites W2046808071 @default.
- W4310251917 cites W2048023415 @default.
- W4310251917 cites W2058524773 @default.
- W4310251917 cites W2069629877 @default.
- W4310251917 cites W20745323 @default.
- W4310251917 cites W2077627698 @default.
- W4310251917 cites W2082222210 @default.
- W4310251917 cites W2090343757 @default.
- W4310251917 cites W2093775560 @default.
- W4310251917 cites W2102166450 @default.
- W4310251917 cites W2105300800 @default.
- W4310251917 cites W2122975995 @default.
- W4310251917 cites W2139228941 @default.
- W4310251917 cites W2153645419 @default.
- W4310251917 cites W2163033402 @default.
- W4310251917 cites W2464898789 @default.
- W4310251917 cites W2524024758 @default.
- W4310251917 cites W2604469633 @default.
- W4310251917 cites W2737073005 @default.
- W4310251917 cites W3118393407 @default.
- W4310251917 cites W3121096604 @default.
- W4310251917 cites W3124405191 @default.
- W4310251917 cites W4236474156 @default.
- W4310251917 doi "https://doi.org/10.1287/deca.2022.0462" @default.
- W4310251917 hasPublicationYear "2023" @default.
- W4310251917 type Work @default.
- W4310251917 citedByCount "0" @default.
- W4310251917 crossrefType "journal-article" @default.
- W4310251917 hasAuthorship W4310251917A5029188907 @default.
- W4310251917 hasAuthorship W4310251917A5045858390 @default.
- W4310251917 hasAuthorship W4310251917A5050610555 @default.
- W4310251917 hasAuthorship W4310251917A5089127356 @default.
- W4310251917 hasBestOaLocation W43102519172 @default.
- W4310251917 hasConcept C100906024 @default.
- W4310251917 hasConcept C105795698 @default.
- W4310251917 hasConcept C121955636 @default.
- W4310251917 hasConcept C126255220 @default.
- W4310251917 hasConcept C129848803 @default.
- W4310251917 hasConcept C134306372 @default.
- W4310251917 hasConcept C144133560 @default.
- W4310251917 hasConcept C165480597 @default.
- W4310251917 hasConcept C169214877 @default.
- W4310251917 hasConcept C182310444 @default.
- W4310251917 hasConcept C185592680 @default.
- W4310251917 hasConcept C192065140 @default.
- W4310251917 hasConcept C196083921 @default.
- W4310251917 hasConcept C198531522 @default.
- W4310251917 hasConcept C199335787 @default.
- W4310251917 hasConcept C199360897 @default.
- W4310251917 hasConcept C33643355 @default.
- W4310251917 hasConcept C33923547 @default.
- W4310251917 hasConcept C34388435 @default.
- W4310251917 hasConcept C41008148 @default.
- W4310251917 hasConcept C41054675 @default.
- W4310251917 hasConcept C43617362 @default.
- W4310251917 hasConcept C90559484 @default.
- W4310251917 hasConceptScore W4310251917C100906024 @default.
- W4310251917 hasConceptScore W4310251917C105795698 @default.
- W4310251917 hasConceptScore W4310251917C121955636 @default.
- W4310251917 hasConceptScore W4310251917C126255220 @default.
- W4310251917 hasConceptScore W4310251917C129848803 @default.
- W4310251917 hasConceptScore W4310251917C134306372 @default.
- W4310251917 hasConceptScore W4310251917C144133560 @default.
- W4310251917 hasConceptScore W4310251917C165480597 @default.
- W4310251917 hasConceptScore W4310251917C169214877 @default.
- W4310251917 hasConceptScore W4310251917C182310444 @default.
- W4310251917 hasConceptScore W4310251917C185592680 @default.
- W4310251917 hasConceptScore W4310251917C192065140 @default.
- W4310251917 hasConceptScore W4310251917C196083921 @default.
- W4310251917 hasConceptScore W4310251917C198531522 @default.
- W4310251917 hasConceptScore W4310251917C199335787 @default.
- W4310251917 hasConceptScore W4310251917C199360897 @default.
- W4310251917 hasConceptScore W4310251917C33643355 @default.
- W4310251917 hasConceptScore W4310251917C33923547 @default.
- W4310251917 hasConceptScore W4310251917C34388435 @default.
- W4310251917 hasConceptScore W4310251917C41008148 @default.
- W4310251917 hasConceptScore W4310251917C41054675 @default.