Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310252801> ?p ?o ?g. }
- W4310252801 endingPage "671" @default.
- W4310252801 startingPage "652" @default.
- W4310252801 abstract "Topic-based communities have gradually become a considerable medium for netizens to disseminate and acquire knowledge. These communities consist of entities (actual objects, e.g., a real answer or an actual question) with different types (users, questions and answers) and are usually hidden and overlapping. Nowadays, prevalent community question answering (CQA) platforms have formed mature communities by manually marked topics and extensive accumulated user behavior. However, the ever-growing various entities and complex overlapping topic communities make it inefficient to manually label entity tags (e.g., Question labels supplement domain features; Potential user tags indicate the user's specialty.). Therefore, there is an urgent need for a mechanism that automatically finds hidden semantic communities from user social behavior and lays a foundation for community construction and intelligent recommendation of QA platforms. In this paper, we propose a Heterogeneous Community Detection Approach Based on Graph Neural Network, called HCDBG, to detect heterogeneous communities in CQA. Firstly, we define entity relationships based on user interaction behavior and employ a heterogeneous information network to uniformly represent all connections. Afterward, we exploit the heterogeneous graph neural network to fuse content and topological features of nodes for graph embedding. Finally, we convert the community detection issue in CQA into an entity clustering task in the heterogeneous information network and improve the k-means method to achieve heterogeneous community detection. Based on our knowledge of the existing literature, it is an innovative research direction that utilizes the heterogeneous graph neural network to facilitate QA community detection. Extensive experiments on authentic question-answering datasets illustrate that HCDBG outperforms baseline methods in heterogeneous community detection." @default.
- W4310252801 created "2022-11-30" @default.
- W4310252801 creator A5004035476 @default.
- W4310252801 creator A5004620567 @default.
- W4310252801 creator A5010029387 @default.
- W4310252801 creator A5016344450 @default.
- W4310252801 creator A5036190708 @default.
- W4310252801 creator A5067616657 @default.
- W4310252801 date "2023-04-01" @default.
- W4310252801 modified "2023-10-14" @default.
- W4310252801 title "Heterogeneous question answering community detection based on graph neural network" @default.
- W4310252801 cites W2395611524 @default.
- W4310252801 cites W2759200442 @default.
- W4310252801 cites W2792670840 @default.
- W4310252801 cites W2810396878 @default.
- W4310252801 cites W2894128290 @default.
- W4310252801 cites W2895654512 @default.
- W4310252801 cites W2903672323 @default.
- W4310252801 cites W2911439672 @default.
- W4310252801 cites W2927650231 @default.
- W4310252801 cites W2945849554 @default.
- W4310252801 cites W2950257936 @default.
- W4310252801 cites W2962821312 @default.
- W4310252801 cites W2963707260 @default.
- W4310252801 cites W2973005848 @default.
- W4310252801 cites W2973087688 @default.
- W4310252801 cites W2974381047 @default.
- W4310252801 cites W2987294674 @default.
- W4310252801 cites W2989789202 @default.
- W4310252801 cites W2995416727 @default.
- W4310252801 cites W2998154301 @default.
- W4310252801 cites W3001437801 @default.
- W4310252801 cites W3025114004 @default.
- W4310252801 cites W3042133669 @default.
- W4310252801 cites W3045266989 @default.
- W4310252801 cites W3047512272 @default.
- W4310252801 cites W3093145506 @default.
- W4310252801 cites W3093432214 @default.
- W4310252801 cites W3094067205 @default.
- W4310252801 cites W3094433718 @default.
- W4310252801 cites W3097390889 @default.
- W4310252801 cites W3102247132 @default.
- W4310252801 cites W3106996681 @default.
- W4310252801 cites W3107194210 @default.
- W4310252801 cites W3108008695 @default.
- W4310252801 cites W3108625061 @default.
- W4310252801 cites W3110036371 @default.
- W4310252801 cites W3127903075 @default.
- W4310252801 cites W3136626006 @default.
- W4310252801 cites W3162387511 @default.
- W4310252801 cites W4210257598 @default.
- W4310252801 doi "https://doi.org/10.1016/j.ins.2022.10.126" @default.
- W4310252801 hasPublicationYear "2023" @default.
- W4310252801 type Work @default.
- W4310252801 citedByCount "4" @default.
- W4310252801 countsByYear W43102528012023 @default.
- W4310252801 crossrefType "journal-article" @default.
- W4310252801 hasAuthorship W4310252801A5004035476 @default.
- W4310252801 hasAuthorship W4310252801A5004620567 @default.
- W4310252801 hasAuthorship W4310252801A5010029387 @default.
- W4310252801 hasAuthorship W4310252801A5016344450 @default.
- W4310252801 hasAuthorship W4310252801A5036190708 @default.
- W4310252801 hasAuthorship W4310252801A5067616657 @default.
- W4310252801 hasConcept C101780184 @default.
- W4310252801 hasConcept C108037233 @default.
- W4310252801 hasConcept C132525143 @default.
- W4310252801 hasConcept C136764020 @default.
- W4310252801 hasConcept C154945302 @default.
- W4310252801 hasConcept C158207573 @default.
- W4310252801 hasConcept C165696696 @default.
- W4310252801 hasConcept C23123220 @default.
- W4310252801 hasConcept C38652104 @default.
- W4310252801 hasConcept C41008148 @default.
- W4310252801 hasConcept C44291984 @default.
- W4310252801 hasConcept C555944384 @default.
- W4310252801 hasConcept C73555534 @default.
- W4310252801 hasConcept C76155785 @default.
- W4310252801 hasConcept C80444323 @default.
- W4310252801 hasConceptScore W4310252801C101780184 @default.
- W4310252801 hasConceptScore W4310252801C108037233 @default.
- W4310252801 hasConceptScore W4310252801C132525143 @default.
- W4310252801 hasConceptScore W4310252801C136764020 @default.
- W4310252801 hasConceptScore W4310252801C154945302 @default.
- W4310252801 hasConceptScore W4310252801C158207573 @default.
- W4310252801 hasConceptScore W4310252801C165696696 @default.
- W4310252801 hasConceptScore W4310252801C23123220 @default.
- W4310252801 hasConceptScore W4310252801C38652104 @default.
- W4310252801 hasConceptScore W4310252801C41008148 @default.
- W4310252801 hasConceptScore W4310252801C44291984 @default.
- W4310252801 hasConceptScore W4310252801C555944384 @default.
- W4310252801 hasConceptScore W4310252801C73555534 @default.
- W4310252801 hasConceptScore W4310252801C76155785 @default.
- W4310252801 hasConceptScore W4310252801C80444323 @default.
- W4310252801 hasLocation W43102528011 @default.
- W4310252801 hasOpenAccess W4310252801 @default.
- W4310252801 hasPrimaryLocation W43102528011 @default.
- W4310252801 hasRelatedWork W1496222301 @default.
- W4310252801 hasRelatedWork W1590307681 @default.