Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310252811> ?p ?o ?g. }
- W4310252811 endingPage "128827" @default.
- W4310252811 startingPage "128827" @default.
- W4310252811 abstract "Grass planting is an important and typical measure for soil and water conservation, while the roles of stolon and erect grass species in affecting surface–subsurface flow and soil erosion processes are little understood. Experimental plots (2 m × 0.5 m × 0.5 m) using red soil with two rainfall intensities (60 and 120 mm h−1) and grass coverage (30 % and 70 %) were conducted in laboratory rainfall simulation experiments. Two common and endemic stolon (Eremochloa ophiuroides) and erect (Lolium perenne) grass species were selected due to their fast growth, power adaptability, and wide application in reducing runoff and soil loss; and the bare soil plot was set up as the control. The results showed that bare plot had the highest mean surface flow coefficient (73.5 %), and then were L. perenne (57.1 %) and E. ophiuroides (44.9 %). The mean subsurface flow coefficients were found in order of E. ophiuroides (25.7 %), L. perenne (13.0 %) and bare plot (7.2 %). The role of stolon grass rather than erect grass in reducing surface flow but improving subsurface flow led to lower surface flow hydraulic characteristics such as flow velocity, Reynolds number, Darcy–Weisbach coefficient and Manning friction coefficient, and hydrodynamic characteristics like flow shear stress and stream power. Furthermore, the stolon grass generated the lowest soil loss rate (0.8 g m−2 min−1), while the values on erect grass and bare plot were 2.5 and 10.7 g m−2 min−1, respectively. The indicator of eroded sediment median size also proved the higher efficiency of stolon grass in soil loss control, with values of 31.8, 58.6 and 69.6 μm on stolon grass, erect grass and bare plots, respectively. The lower soil loss on stolon grass cover plot was attributed to the lower surface flow and hydraulic–hydrodynamic characteristics. The stolon grass was more sensitive to the coverage and rainfall intensity, which was explained by the higher flow and sediment trapping capability (2.2 ∼ 4.4 times) under lower coverage and rainfall intensity than erect grass, even under high rainfall intensity (1.1 ∼ 3.2 times). The stolon grass played more beneficial roles in soil and water conservation than erect grass, which was closely related to above-ground and under-ground parts of grass. This study can provide a better understanding of the roles of stolon and erect grass species for soil and water conservation and management practices." @default.
- W4310252811 created "2022-11-30" @default.
- W4310252811 creator A5018986249 @default.
- W4310252811 creator A5020746135 @default.
- W4310252811 creator A5021684740 @default.
- W4310252811 creator A5030766421 @default.
- W4310252811 creator A5035164097 @default.
- W4310252811 creator A5042707799 @default.
- W4310252811 creator A5057320824 @default.
- W4310252811 creator A5073287760 @default.
- W4310252811 creator A5084407437 @default.
- W4310252811 creator A5087071849 @default.
- W4310252811 date "2023-02-01" @default.
- W4310252811 modified "2023-10-14" @default.
- W4310252811 title "Roles of the stolon and erect grass species in surface–subsurface flow generation and red soil loss" @default.
- W4310252811 cites W1968647266 @default.
- W4310252811 cites W1996719338 @default.
- W4310252811 cites W1997723727 @default.
- W4310252811 cites W2017641960 @default.
- W4310252811 cites W2021589168 @default.
- W4310252811 cites W2022770308 @default.
- W4310252811 cites W2023157461 @default.
- W4310252811 cites W2024011837 @default.
- W4310252811 cites W2027637194 @default.
- W4310252811 cites W2046242842 @default.
- W4310252811 cites W2061162823 @default.
- W4310252811 cites W2084940108 @default.
- W4310252811 cites W2098249105 @default.
- W4310252811 cites W2102429518 @default.
- W4310252811 cites W2103756837 @default.
- W4310252811 cites W2105358160 @default.
- W4310252811 cites W2135573416 @default.
- W4310252811 cites W2172689108 @default.
- W4310252811 cites W2289574933 @default.
- W4310252811 cites W2313323302 @default.
- W4310252811 cites W2415558827 @default.
- W4310252811 cites W2527427148 @default.
- W4310252811 cites W2551550943 @default.
- W4310252811 cites W2601967223 @default.
- W4310252811 cites W2776597219 @default.
- W4310252811 cites W2782084880 @default.
- W4310252811 cites W2782421310 @default.
- W4310252811 cites W2793296102 @default.
- W4310252811 cites W2796904128 @default.
- W4310252811 cites W2801042376 @default.
- W4310252811 cites W2801756315 @default.
- W4310252811 cites W2804730208 @default.
- W4310252811 cites W2883413014 @default.
- W4310252811 cites W2930468902 @default.
- W4310252811 cites W2949601003 @default.
- W4310252811 cites W2959908288 @default.
- W4310252811 cites W2981398400 @default.
- W4310252811 cites W2990844031 @default.
- W4310252811 cites W2993455026 @default.
- W4310252811 cites W2996649555 @default.
- W4310252811 cites W2997147024 @default.
- W4310252811 cites W3003834983 @default.
- W4310252811 cites W3016628382 @default.
- W4310252811 cites W3036187710 @default.
- W4310252811 cites W3085385014 @default.
- W4310252811 cites W3154966459 @default.
- W4310252811 cites W3162341836 @default.
- W4310252811 cites W3206921590 @default.
- W4310252811 cites W4206928256 @default.
- W4310252811 cites W4212884677 @default.
- W4310252811 cites W4220811244 @default.
- W4310252811 cites W768358393 @default.
- W4310252811 doi "https://doi.org/10.1016/j.jhydrol.2022.128827" @default.
- W4310252811 hasPublicationYear "2023" @default.
- W4310252811 type Work @default.
- W4310252811 citedByCount "0" @default.
- W4310252811 crossrefType "journal-article" @default.
- W4310252811 hasAuthorship W4310252811A5018986249 @default.
- W4310252811 hasAuthorship W4310252811A5020746135 @default.
- W4310252811 hasAuthorship W4310252811A5021684740 @default.
- W4310252811 hasAuthorship W4310252811A5030766421 @default.
- W4310252811 hasAuthorship W4310252811A5035164097 @default.
- W4310252811 hasAuthorship W4310252811A5042707799 @default.
- W4310252811 hasAuthorship W4310252811A5057320824 @default.
- W4310252811 hasAuthorship W4310252811A5073287760 @default.
- W4310252811 hasAuthorship W4310252811A5084407437 @default.
- W4310252811 hasAuthorship W4310252811A5087071849 @default.
- W4310252811 hasConcept C100187453 @default.
- W4310252811 hasConcept C127313418 @default.
- W4310252811 hasConcept C159390177 @default.
- W4310252811 hasConcept C159750122 @default.
- W4310252811 hasConcept C187320778 @default.
- W4310252811 hasConcept C18903297 @default.
- W4310252811 hasConcept C2777275582 @default.
- W4310252811 hasConcept C39432304 @default.
- W4310252811 hasConcept C46757340 @default.
- W4310252811 hasConcept C50477045 @default.
- W4310252811 hasConcept C6557445 @default.
- W4310252811 hasConcept C67283384 @default.
- W4310252811 hasConcept C76177295 @default.
- W4310252811 hasConcept C76886044 @default.
- W4310252811 hasConcept C86803240 @default.
- W4310252811 hasConceptScore W4310252811C100187453 @default.