Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310252819> ?p ?o ?g. }
- W4310252819 endingPage "106147" @default.
- W4310252819 startingPage "106147" @default.
- W4310252819 abstract "With the advancements in renewable energy and energy storage technologies, the energy hubs (EH) have been emerging in recent years. The scheduling of EH is a challenging task due to the need to incorporate uncertainties at energy supply and load side. The existing model-based optimization approaches proposed for the above purpose have limitations in terms of solution accuracy and computational efficiency, which makes hinders their applications. This paper proposes a model-free, safe deep reinforcement learning (DRL) approach, using primal-dual optimization and imitation learning, for optimal scheduling of an EH that includes a tri-generative advanced adiabatic compressed air energy storage (AA-CAES). First, the operation of an AA-CAES under off-design conditions is modeled and linearized using a mixed-integer linear programming (MILP). Then, a safe DRL approach is proposed with training and testing steps considering a case study. The performance of the proposed approach in reducing operational cost and satisfying constraints is compared to the state-of-the-art DRL algorithms as well as a deterministic MILP approach. In addition, the generalization of the proposed approach is examined on a test-set. Finally, the effect of off-design conditions of a tri-generative AA-CAES on the optimal dispatch strategy is investigated. The results indicate that the proposed approach can effectively reduce the operational cost and satisfy the operational constraints." @default.
- W4310252819 created "2022-11-30" @default.
- W4310252819 creator A5042592800 @default.
- W4310252819 creator A5075519601 @default.
- W4310252819 creator A5085335921 @default.
- W4310252819 date "2023-01-01" @default.
- W4310252819 modified "2023-09-27" @default.
- W4310252819 title "Optimal dispatch of an energy hub with compressed air energy storage: A safe reinforcement learning approach" @default.
- W4310252819 cites W1803049293 @default.
- W4310252819 cites W1909013979 @default.
- W4310252819 cites W2093853564 @default.
- W4310252819 cites W2101836934 @default.
- W4310252819 cites W2145339207 @default.
- W4310252819 cites W2538645480 @default.
- W4310252819 cites W2767535599 @default.
- W4310252819 cites W2795528357 @default.
- W4310252819 cites W2795578496 @default.
- W4310252819 cites W2884724571 @default.
- W4310252819 cites W2889418943 @default.
- W4310252819 cites W2895707232 @default.
- W4310252819 cites W2911958610 @default.
- W4310252819 cites W2914257494 @default.
- W4310252819 cites W2952242647 @default.
- W4310252819 cites W2964989119 @default.
- W4310252819 cites W2977641756 @default.
- W4310252819 cites W3006755289 @default.
- W4310252819 cites W3013995140 @default.
- W4310252819 cites W3026291651 @default.
- W4310252819 cites W3033321454 @default.
- W4310252819 cites W3033969010 @default.
- W4310252819 cites W3034618605 @default.
- W4310252819 cites W3048998738 @default.
- W4310252819 cites W3087340796 @default.
- W4310252819 cites W3112670038 @default.
- W4310252819 cites W3126844349 @default.
- W4310252819 cites W3127991893 @default.
- W4310252819 cites W3128363455 @default.
- W4310252819 cites W3155726845 @default.
- W4310252819 cites W3160080145 @default.
- W4310252819 cites W3161922297 @default.
- W4310252819 cites W3169870701 @default.
- W4310252819 cites W3171771145 @default.
- W4310252819 cites W3193977437 @default.
- W4310252819 cites W3196203118 @default.
- W4310252819 cites W4205760645 @default.
- W4310252819 cites W4206814916 @default.
- W4310252819 cites W4210294974 @default.
- W4310252819 cites W4211225813 @default.
- W4310252819 cites W4214507393 @default.
- W4310252819 cites W4220690307 @default.
- W4310252819 cites W4281567217 @default.
- W4310252819 cites W4284962954 @default.
- W4310252819 cites W4285144335 @default.
- W4310252819 cites W4286445189 @default.
- W4310252819 cites W4294664188 @default.
- W4310252819 doi "https://doi.org/10.1016/j.est.2022.106147" @default.
- W4310252819 hasPublicationYear "2023" @default.
- W4310252819 type Work @default.
- W4310252819 citedByCount "4" @default.
- W4310252819 countsByYear W43102528192023 @default.
- W4310252819 crossrefType "journal-article" @default.
- W4310252819 hasAuthorship W4310252819A5042592800 @default.
- W4310252819 hasAuthorship W4310252819A5075519601 @default.
- W4310252819 hasAuthorship W4310252819A5085335921 @default.
- W4310252819 hasConcept C11413529 @default.
- W4310252819 hasConcept C119599485 @default.
- W4310252819 hasConcept C121332964 @default.
- W4310252819 hasConcept C126255220 @default.
- W4310252819 hasConcept C127413603 @default.
- W4310252819 hasConcept C154945302 @default.
- W4310252819 hasConcept C163258240 @default.
- W4310252819 hasConcept C188573790 @default.
- W4310252819 hasConcept C206729178 @default.
- W4310252819 hasConcept C2780113879 @default.
- W4310252819 hasConcept C33923547 @default.
- W4310252819 hasConcept C41008148 @default.
- W4310252819 hasConcept C56086750 @default.
- W4310252819 hasConcept C62520636 @default.
- W4310252819 hasConcept C73916439 @default.
- W4310252819 hasConcept C97541855 @default.
- W4310252819 hasConceptScore W4310252819C11413529 @default.
- W4310252819 hasConceptScore W4310252819C119599485 @default.
- W4310252819 hasConceptScore W4310252819C121332964 @default.
- W4310252819 hasConceptScore W4310252819C126255220 @default.
- W4310252819 hasConceptScore W4310252819C127413603 @default.
- W4310252819 hasConceptScore W4310252819C154945302 @default.
- W4310252819 hasConceptScore W4310252819C163258240 @default.
- W4310252819 hasConceptScore W4310252819C188573790 @default.
- W4310252819 hasConceptScore W4310252819C206729178 @default.
- W4310252819 hasConceptScore W4310252819C2780113879 @default.
- W4310252819 hasConceptScore W4310252819C33923547 @default.
- W4310252819 hasConceptScore W4310252819C41008148 @default.
- W4310252819 hasConceptScore W4310252819C56086750 @default.
- W4310252819 hasConceptScore W4310252819C62520636 @default.
- W4310252819 hasConceptScore W4310252819C73916439 @default.
- W4310252819 hasConceptScore W4310252819C97541855 @default.
- W4310252819 hasLocation W43102528191 @default.
- W4310252819 hasOpenAccess W4310252819 @default.