Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310253078> ?p ?o ?g. }
- W4310253078 endingPage "106538" @default.
- W4310253078 startingPage "106538" @default.
- W4310253078 abstract "Understanding the spatial variability of extreme precipitation events (EPEs) has always been a challenging task, with climate change further complicating the issue. Many studies have looked into the spatiotemporal characteristics of EPEs and the possibility of them being connected. Most of these studies are based on observation data products which inform about the events after they have occurred. Various Quantitative Precipitation Forecasts (QPFs) obtained from the Numerical Weather Prediction (NWP) models such as those of the European Centre for Medium-range Weather Forecasts (ECMWF), Japan Meteorological Agency (JMA), National Centre for Medium-Range Weather Forecasting (NCMRWF), and UK Met Office (UKMO) are available which inform about the precipitation events before they have occurred. In this study, we inter-evaluate four gridded (deterministic) QPFs over the Ganga River basin of India for their ability to detect the spatial connections among EPEs during the monsoon months, i.e., June, July, August and September (JJAS). Several experimental runs are performed in multiple time periods (13, 6 and 4 years) at various percentile thresholds (85th, 90th and 95th percentile) at two spatial resolutions of 25 and 50-km. Moreover, we also evaluate the forecast patterns of the QPF obtained from the national agency of India, i.e., NCMRWF and analyse its performance with respect to the other three selected QPFs from international agencies. For the observation/reference dataset, the gridded Indian Meteorological Department (IMD) dataset is selected. We first use the deterministic and dichotomous error statistics to evaluate the performance of NWP forecasts. Further, we employ the theory of complex networks to create networks of extreme precipitation at each grid. With this work, we aim to answer (a) can the theory of complex networks be a feasible tool for evaluating the performance of NWP forecasts in detecting extreme precipitation behaviour; (b) does the change in temporal length of the NWP forecasts influence the spatial structure of extreme precipitation as observed before, and (c) can a global NWP model, larger in length, be used as a potential substitute to the NCMRWF model. The ECMWF model performs well with respect to IMD as the average CC for TP_13 is 0.42 while they are 0.31 and 0.34 for TP_6 and TP_4, respectively. Also, we find that ECMWF can be a suitable substitute for the NCMRWF model. The identification of a substitute precipitation forecast, larger in temporal length, can be beneficial as input in hydrological models for streamflow forecasting and estimating parameters for bias correction of precipitation, among others." @default.
- W4310253078 created "2022-11-30" @default.
- W4310253078 creator A5010723524 @default.
- W4310253078 creator A5031612152 @default.
- W4310253078 creator A5048609052 @default.
- W4310253078 date "2023-02-01" @default.
- W4310253078 modified "2023-09-30" @default.
- W4310253078 title "Spatial connections in extreme precipitation events obtained from NWP forecasts: A complex network approach" @default.
- W4310253078 cites W1966333815 @default.
- W4310253078 cites W1980154793 @default.
- W4310253078 cites W2005257038 @default.
- W4310253078 cites W2007478055 @default.
- W4310253078 cites W2043651636 @default.
- W4310253078 cites W2069225437 @default.
- W4310253078 cites W2070722739 @default.
- W4310253078 cites W2105930180 @default.
- W4310253078 cites W2113988163 @default.
- W4310253078 cites W2138078654 @default.
- W4310253078 cites W2164218975 @default.
- W4310253078 cites W2308141747 @default.
- W4310253078 cites W2476266206 @default.
- W4310253078 cites W2505827166 @default.
- W4310253078 cites W2520866340 @default.
- W4310253078 cites W2735153166 @default.
- W4310253078 cites W2744551890 @default.
- W4310253078 cites W2751226455 @default.
- W4310253078 cites W2754164115 @default.
- W4310253078 cites W2761032300 @default.
- W4310253078 cites W2793985898 @default.
- W4310253078 cites W2910861599 @default.
- W4310253078 cites W2925052803 @default.
- W4310253078 cites W2976574520 @default.
- W4310253078 cites W3000417490 @default.
- W4310253078 cites W3009010898 @default.
- W4310253078 cites W3023702045 @default.
- W4310253078 cites W3036568675 @default.
- W4310253078 cites W3041316182 @default.
- W4310253078 cites W3152865325 @default.
- W4310253078 cites W3154161832 @default.
- W4310253078 cites W3160511996 @default.
- W4310253078 cites W3186132292 @default.
- W4310253078 cites W3204291435 @default.
- W4310253078 cites W4282974612 @default.
- W4310253078 cites W4284962768 @default.
- W4310253078 doi "https://doi.org/10.1016/j.atmosres.2022.106538" @default.
- W4310253078 hasPublicationYear "2023" @default.
- W4310253078 type Work @default.
- W4310253078 citedByCount "2" @default.
- W4310253078 countsByYear W43102530782023 @default.
- W4310253078 crossrefType "journal-article" @default.
- W4310253078 hasAuthorship W4310253078A5010723524 @default.
- W4310253078 hasAuthorship W4310253078A5031612152 @default.
- W4310253078 hasAuthorship W4310253078A5048609052 @default.
- W4310253078 hasConcept C105795698 @default.
- W4310253078 hasConcept C107054158 @default.
- W4310253078 hasConcept C122048520 @default.
- W4310253078 hasConcept C127313418 @default.
- W4310253078 hasConcept C140178040 @default.
- W4310253078 hasConcept C147947694 @default.
- W4310253078 hasConcept C153294291 @default.
- W4310253078 hasConcept C159985019 @default.
- W4310253078 hasConcept C161840515 @default.
- W4310253078 hasConcept C166851805 @default.
- W4310253078 hasConcept C170061395 @default.
- W4310253078 hasConcept C192562407 @default.
- W4310253078 hasConcept C204323151 @default.
- W4310253078 hasConcept C205649164 @default.
- W4310253078 hasConcept C33923547 @default.
- W4310253078 hasConcept C39432304 @default.
- W4310253078 hasConcept C49204034 @default.
- W4310253078 hasConcept C58640448 @default.
- W4310253078 hasConcept C75398719 @default.
- W4310253078 hasConceptScore W4310253078C105795698 @default.
- W4310253078 hasConceptScore W4310253078C107054158 @default.
- W4310253078 hasConceptScore W4310253078C122048520 @default.
- W4310253078 hasConceptScore W4310253078C127313418 @default.
- W4310253078 hasConceptScore W4310253078C140178040 @default.
- W4310253078 hasConceptScore W4310253078C147947694 @default.
- W4310253078 hasConceptScore W4310253078C153294291 @default.
- W4310253078 hasConceptScore W4310253078C159985019 @default.
- W4310253078 hasConceptScore W4310253078C161840515 @default.
- W4310253078 hasConceptScore W4310253078C166851805 @default.
- W4310253078 hasConceptScore W4310253078C170061395 @default.
- W4310253078 hasConceptScore W4310253078C192562407 @default.
- W4310253078 hasConceptScore W4310253078C204323151 @default.
- W4310253078 hasConceptScore W4310253078C205649164 @default.
- W4310253078 hasConceptScore W4310253078C33923547 @default.
- W4310253078 hasConceptScore W4310253078C39432304 @default.
- W4310253078 hasConceptScore W4310253078C49204034 @default.
- W4310253078 hasConceptScore W4310253078C58640448 @default.
- W4310253078 hasConceptScore W4310253078C75398719 @default.
- W4310253078 hasFunder F4320320719 @default.
- W4310253078 hasFunder F4320323670 @default.
- W4310253078 hasFunder F4320334771 @default.
- W4310253078 hasLocation W43102530781 @default.
- W4310253078 hasOpenAccess W4310253078 @default.
- W4310253078 hasPrimaryLocation W43102530781 @default.
- W4310253078 hasRelatedWork W1882439680 @default.