Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310253359> ?p ?o ?g. }
- W4310253359 endingPage "128828" @default.
- W4310253359 startingPage "128828" @default.
- W4310253359 abstract "A hydraulic tomography – physics informed neural network (HT-PINN) is developed for inverting two-dimensional large-scale spatially distributed transmissivity. HT-PINN involves a neural network model of transmissivity and a series of neural network models to describe transient or steady-state sequential pumping tests. All the neural network models are jointly trained by minimizing the total loss function including data fitting errors and PDE constraints. Batch training of collocation points is used to amplify the advantage of the mesh-free property of neural networks, thereby limiting the number of collocation points per training iteration and reducing the total training time. The developed HT-PINN accurately and efficiently inverts two-dimensional Gaussian transmissivity fields with more than a million unknowns (1024 × 1024 resolution), and the inversion map accuracy exceeds 95 %. The effects of batch sampling methods, batch number and size, and data requirements for direct and indirect measurements are systematically investigated. In addition, the developed HT-PINN exhibits great scalability and structure robustness in inverting fields with different resolutions ranging from coarse (64 × 64) to fine (1024 × 1024). Specifically, data requirements do not increase with the problem dimensionality, and the computational cost of HT-PINN remains almost unchanged due to its mesh-free nature while maintaining high inversion accuracy when increasing the field resolution." @default.
- W4310253359 created "2022-11-30" @default.
- W4310253359 creator A5005820200 @default.
- W4310253359 creator A5010323439 @default.
- W4310253359 creator A5016033810 @default.
- W4310253359 creator A5070262264 @default.
- W4310253359 date "2023-01-01" @default.
- W4310253359 modified "2023-10-11" @default.
- W4310253359 title "High-dimensional inverse modeling of hydraulic tomography by physics informed neural network (HT-PINN)" @default.
- W4310253359 cites W1230375122 @default.
- W4310253359 cites W1581594141 @default.
- W4310253359 cites W1829779367 @default.
- W4310253359 cites W1977822596 @default.
- W4310253359 cites W2019797282 @default.
- W4310253359 cites W2022553873 @default.
- W4310253359 cites W2048053123 @default.
- W4310253359 cites W2049937937 @default.
- W4310253359 cites W2098981021 @default.
- W4310253359 cites W2127178605 @default.
- W4310253359 cites W2154987621 @default.
- W4310253359 cites W2157488230 @default.
- W4310253359 cites W2418946128 @default.
- W4310253359 cites W249716461 @default.
- W4310253359 cites W2507348356 @default.
- W4310253359 cites W2562243139 @default.
- W4310253359 cites W2573864470 @default.
- W4310253359 cites W2625853219 @default.
- W4310253359 cites W2745110207 @default.
- W4310253359 cites W2762902720 @default.
- W4310253359 cites W2900369848 @default.
- W4310253359 cites W2908541468 @default.
- W4310253359 cites W2919115771 @default.
- W4310253359 cites W2923882780 @default.
- W4310253359 cites W3004450693 @default.
- W4310253359 cites W3006689658 @default.
- W4310253359 cites W3010849941 @default.
- W4310253359 cites W3011806874 @default.
- W4310253359 cites W3011851702 @default.
- W4310253359 cites W3014468003 @default.
- W4310253359 cites W3015865829 @default.
- W4310253359 cites W3021668893 @default.
- W4310253359 cites W3048778144 @default.
- W4310253359 cites W3084119156 @default.
- W4310253359 cites W3104994177 @default.
- W4310253359 cites W3112470409 @default.
- W4310253359 cites W3114249691 @default.
- W4310253359 cites W3115283966 @default.
- W4310253359 cites W3123551284 @default.
- W4310253359 cites W3144554692 @default.
- W4310253359 cites W3160131349 @default.
- W4310253359 cites W3210106786 @default.
- W4310253359 cites W4220728097 @default.
- W4310253359 cites W4285010322 @default.
- W4310253359 cites W4296079207 @default.
- W4310253359 doi "https://doi.org/10.1016/j.jhydrol.2022.128828" @default.
- W4310253359 hasPublicationYear "2023" @default.
- W4310253359 type Work @default.
- W4310253359 citedByCount "4" @default.
- W4310253359 countsByYear W43102533592023 @default.
- W4310253359 crossrefType "journal-article" @default.
- W4310253359 hasAuthorship W4310253359A5005820200 @default.
- W4310253359 hasAuthorship W4310253359A5010323439 @default.
- W4310253359 hasAuthorship W4310253359A5016033810 @default.
- W4310253359 hasAuthorship W4310253359A5070262264 @default.
- W4310253359 hasConcept C104317684 @default.
- W4310253359 hasConcept C111030470 @default.
- W4310253359 hasConcept C11413529 @default.
- W4310253359 hasConcept C121332964 @default.
- W4310253359 hasConcept C126255220 @default.
- W4310253359 hasConcept C134306372 @default.
- W4310253359 hasConcept C135252773 @default.
- W4310253359 hasConcept C154945302 @default.
- W4310253359 hasConcept C163716315 @default.
- W4310253359 hasConcept C185592680 @default.
- W4310253359 hasConcept C207467116 @default.
- W4310253359 hasConcept C2524010 @default.
- W4310253359 hasConcept C33923547 @default.
- W4310253359 hasConcept C41008148 @default.
- W4310253359 hasConcept C50644808 @default.
- W4310253359 hasConcept C55493867 @default.
- W4310253359 hasConcept C62520636 @default.
- W4310253359 hasConcept C63479239 @default.
- W4310253359 hasConceptScore W4310253359C104317684 @default.
- W4310253359 hasConceptScore W4310253359C111030470 @default.
- W4310253359 hasConceptScore W4310253359C11413529 @default.
- W4310253359 hasConceptScore W4310253359C121332964 @default.
- W4310253359 hasConceptScore W4310253359C126255220 @default.
- W4310253359 hasConceptScore W4310253359C134306372 @default.
- W4310253359 hasConceptScore W4310253359C135252773 @default.
- W4310253359 hasConceptScore W4310253359C154945302 @default.
- W4310253359 hasConceptScore W4310253359C163716315 @default.
- W4310253359 hasConceptScore W4310253359C185592680 @default.
- W4310253359 hasConceptScore W4310253359C207467116 @default.
- W4310253359 hasConceptScore W4310253359C2524010 @default.
- W4310253359 hasConceptScore W4310253359C33923547 @default.
- W4310253359 hasConceptScore W4310253359C41008148 @default.
- W4310253359 hasConceptScore W4310253359C50644808 @default.
- W4310253359 hasConceptScore W4310253359C55493867 @default.